
Elastic Java Heap for
Scaling and Clustering
Enterprise Applications

Elastic memory attempts to address two
fundamental limitations imposed by Java
memory management: limited heap sizes and
garbage collection (GC) overhead. These
drawbacks prevent Java applications from
leveraging random access memory in order to
store huge amounts of data objects for high
throughput. This paper will (a) expand upon
the research currently being conducted in the
field of off-heap management of Java objects
and (b) propose an approach to augmenting
the cost-effective scaling-up/out of enterprise
applications.

www.globallogic.com

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Development

Noida, India

Elastic Java Heap for Scaling and Clustering
Enterprise Applications

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Development

GlobalLogic Inc. www.globallogic.com 2

Table of Contents

Introduction ..

Off-Heap Object Management ..
 MapDB: An Off-Heap Java Solution ...

Integrating Distributed Cache Solutions with Off-Heap Memory Management of Java Objects ..
 Extending Infinispan to Use an Off-Heap Map ...
 Extending Memcached to Use an Off-Heap Map ..

Conclusion ..

References ...

3

3
3

4
4
5

5

5

Elastic Java Heap for Scaling and Clustering
Enterprise Applications

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Development

GlobalLogic Inc. www.globallogic.com 3

Introduction

Before the advent of 64-bit platforms, a JVM was mostly
limited to 2GB of heap size, given the inherent addressing
limitations of a 32-bit architecture. With 64-bit JVMs and
operating systems now becoming ubiquitous, developers
have attempted to test how much heap space can be
allocated to a JVM instance with measurable performance
gains. The maximum heap size allocation has been
estimated at around 16GB, beyond which performance
gains begin to taper off. This behavior is attributed to
overheads associated with longer GC cycles, as well as
memory pagination issues related to the size of a single
addressable unit of memory and management of these
pages (aka, thrashing).

Distributed or replicated caching are common strategies
for creating fault tolerant, highly available and scalable
enterprise applications. In Enterprise Java, popular
caching solutions like Memcached for distributed caching
and Infinispan for both replicated and distributed caching
use an object map as data storage for supporting put()
and get() operations. This object map is managed
across a cluster to provide scalability. A cluster created
by using these caching solutions is also subject to
limitations imposed by Java heap. In their current default
implementations, they can only support the scaling-up of
heap to 16GB per server/node instance on the cluster.

If one were to integrate Java’s elastic memory concept
with caching/clustering solutions by creating the object
map in an off-heap location (at least theoretically), only
the amount of physical memory present on a node would
act as a deterrent to scaling. Given the fact that RAM
costs have been coming down significantly over the last
few years, organizations have more flexibility in creating a
solution that balances both cost and throughput.

Off-Heap Object Management

The management of Java objects in a memory space
above and beyond limited heap size – also referred to
as off-heap – has been proposed as a potential solution
to this problem. One of the key strategies proposed for
the off-heap memory management of objects is driven by
the use of the ByteBuffer class in Java. The ByteBuffer
class was introduced in J2SE 1.4. Using this class, a

program may attempt to utilize a system’s memory, by-
passing Java’s own management of objects, although the
responsibility of boundary checks and mapping of memory
chunks onto an object in Java would be delegated to the
program itself. Moreover, the program has to ensure that
it does not attempt to go beyond the permissible address
space of memory; otherwise, it may be subjected to the
quirks of the underlying operating system’s own memory
management algorithms for individual processes.

A. MapDB: An Off-Heap Java Solution

MapDB is an open source project available under Apache
License 2.0. Using MapDB, we can create an instance
of either a concurrent Tree or HashMap. All the objects
that are pushed onto this Tree or HashMap using a put()
operation will be stored in an off-heap location. Below is
a code snippet that we used for creating an instance of
MapDB.

DB db = DBMaker.newDirectMemoryDB().make();
Map map = db.getTreeMap(“MyCache”);

We executed a test case on a Windows 7 machine with
4GB of maximum RAM available. 256MB max heap was
allocated to the JVM. The below code was executed under
this JVM configuration to insert a set of ten million plain
vanilla string objects into a map created on a standard
Java heap.

Map<Object, Object> c = new HashMap<Object,
Object>();
for (long ctr = 0;; ctr ++; ctr <1000000) {
c.put(String.valueOf(ctr), ctr);
if (ctr % 1000000 == 0) {
System.out.println(“” + ctr);
}
}

The JVM ran out of heap space and threw the java.lang.
OutOfMemoryError: (i.e., Java heap space exception)
after inserting a little over five million objects in the Map.

The same test case was executed using MapDb. The
instance of the Map used was obtained using MapDB, and

Elastic Java Heap for Scaling and Clustering
Enterprise Applications

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Development

GlobalLogic Inc. www.globallogic.com 4

objects were inserted into it. It is to be noted that the max
heap space allocated to JVM remained 256MB. Below is
the code snippet used for executing this operation.

DB db = DBMaker.newDirectMemoryDB().make();
Map<Object, Object> c = db.getTreeMap(“mapDb”);
for (long ctr = 0;; ctr ++; ctr <1000000) {
 c.put(String.valueOf(ctr), ctr);
 if (ctr % 1000000 == 0) {
 System.out.println(“” + ctr);
 }
}

It was observed that the system successfully inserted
ten million records without throwing any exception.
We executed multiple iterations of our test case with
consistent results, which convinced us that MapDB was
indeed using off-heap space for storing all those objects.

Integrating Distributed Cache
Solutions with Off-Heap Memory
Management of Java Objects

Memcahced and Infinispan provide open source,
distributed object caching solutions that enable enterprise
applications to achieve high throughput by reducing
the database load. Both of these solutions utilize an in-
memory key-value store for small chunks of arbitrary data
(e.g., strings, objects) resulting from database calls, API
calls, or page rendering.

Memcached offers only a distributed mode of caching; it
does not support replication. Distribution is just one of the
cache mode options in Infinispan apart from replication
and invalidation. In a replicated cache, all nodes in a cluster
hold all objects (i.e., if an object exists on one node, it will
also exist on all other nodes). Since Memcached does not
support replication, it cannot be used in solutions where
high availability is desired.

Infinispan supports a distributed cache mode with high
fault tolerance and availability so that a certain user-
defined number of copies are replicated. A distributed
cache provides a far greater degree of scalability than a
replicated cache.

A. Extending Infinispan to Use an Off-Heap Map

Infinispan is an open source in-memory data grid platform.
It exposes a JSR-107 compatible cache interface (which in
turn extends java.util.Map) in which you can store objects.

The value offered by Infinispan is primarily due to the
distributed mode that it provides, where caches cluster
together and expose a massive heap and high availability.
For example, assume you have twenty nodes in your cluster,
with each node running on a 64-bit platform and a 64-bit
JVM. Also assume that each node has 16GB of space to
dedicate to a distributed grid. If you want three copies per
data item, you would get a 140GB memory backed virtual
heap that is efficiently accessible from anywhere in the
grid. If a server fails, the grid simply creates new copies of
the lost data and puts them on other servers. Applications
looking for massive throughput are no longer forced to
delegate the majority of their data lookups to a large
single database server (i.e., the bottleneck that exists in
most enterprise applications).

To create an instance of the Map that will be used for
storing an object in Infinispan, we used the below code
fragment from the DefaultCacheManager class.

ConcurrentMap<String, CacheWrapper>
= ConcurrentMapFactory.makeConcurrentMap();

The below code snippet demonstrates what would
happen if the Map created in this class was replaced by
an off-heap map created and backed by MapDB.

ConcurrentMap<String, CacheWrapper> caches ;
 DB db = DBMaker.newMemoryDB().make();
 caches = db.getHashMap(“mapDB”);

One can theoretically harness an infinite amount of highly
available heap space per server instance. Let’s extrapolate
on our earlier example of twenty nodes in a cluster, but
assume that each node can now be potentially assigned
to a not-so-expensive 64GB of space for infinispan. If
you wanted three copies per data item, you would get a
560GB memory backed virtual heap!

Elastic Java Heap for Scaling and Clustering
Enterprise Applications

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Development

GlobalLogic Inc. www.globallogic.com 5

B. Extending Memcached to Use an Off-Heap Map

Similar to the use case leveraged for Infinispan, one can
build a clustered array of 560GB of virtual, highly available
heap using Memcached. Memcache uses its class
ConcurrentLinkedHashMap to create an instance of the
Map to store Java objects.

ConcurrentMap<K, Node<K, V>> data =new
ConcurrentHashMap<K, Node<K,
V>>(maximumCapacity, 0.75f, concurrencyLevel);

This can be replaced by the below code snippet to
leverage the off-heap Map created by MapDB.

ConcurrentMap<K, Node<K, V>> data;
DB db = DBMaker.newMemoryDB().make();
data = db.getHashMap(“mapDB”);

Conclusion

The off-heap management of Java objects for applications
running on relatively low-end server nodes can be
integrated with distributed caching solutions. This strategy
can offer significant scaling options to organizations
looking for highly scalable yet cost-effective options for
delivering the expected throughput to their expanding
user base while managing increasingly vast amounts of
data.

References

We would like to acknowledge the excellent work done
by Jan Kotek on his MaDB project, which allowed us to
experiment with off-heap Java memory management. We
would also like to acknowledge the great work done by
the Infinispan and Memchaced teams, who have created
these state-of-the-art open source caching solutions for
the community.

1. Jboss Infinispan
http://www.jboss.org/infinispan

2. Jan Kotek –MapDb
http://www.mapdb.org

3. Memcache
http://memcached.org

4. Oracle Java
http://www.oracle.com/us/technologies/java/standard-
edition/overview/index.html

5. Microsoft Windows
http://windows.microsoft.com/en-IN/windows7/products/
home

About GlobalLogic Inc.
GlobalLogic is a full-lifecycle product development services leader
that combines deep domain expertise and cross-industry experience
to connect makers with markets worldwide.Using insight gained
from working on innovative products and disruptive technologies,
we collaborate with customers to show them how strategic research
and development can become a tool for managing their future. We
build partnerships with market-defining business and technology
leaders who want to make amazing products, discover new revenue
opportunities, and accelerate time to market.

For more information, visit www.globallogic.com

Contact

Emily Younger
+1.512.394.7745
emily.younger@globallogic.com

