
SQL Performance Tuning

Shalabh Mehrotra,
Senior Solutions Architect

Noida, India

Database performance is one of the most
challenging aspects of an organization’s
database operations, and SQL tuning can help
signficantly improve a system’s health and
performance. This white paper demonstrates
how to improve the performance an
organization’s structured query language.

www.globallogic.com

SQL Performance Tuning Shalabh Mehrotra, Senior Solutions Architect

GlobalLogic Inc. www.globallogic.com 2

Table of Contents

Introduction ..
General SQL Tuning Guidelines ...
 Write Sensible Queries ..
 Tuning Subqueries ...
 Limit the Number of Tables in a Join ...
 Recursive Calls Should be kept to a Minimum ...
 Improving Parse Speed ..
 Alias Usage ..
 Driving Tables ...
 Caching Tables ..
 Avoid Using Select * Clauses ..
 Exists vs. In ..
 Not Exists vs. Not In ..
 In with Minus vs. Not In for Non-Indexed Columns ..
 Correlated Subqueries vs. Inline Views ...
 Views Usage ..
 Use Decode to Reduce Processing ..
 Inequalities ...
 Using Union in Place of Or ...
 Using Union All Instead of Union ...
 Influencing the Optimizer Using Hints ..
 Presence Checking ...
 Using Indexes to Improve Performance ..
 Why Indexes are Not Used ...
Conclusion ..
Referenes ..

3
3
3
3
3
3
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
7
8
8
9
9

SQL Performance Tuning Shalabh Mehrotra, Senior Solutions Architect

GlobalLogic Inc. www.globallogic.com 3

Introduction

Database performance is one of the most challenging
aspects of an organization’s database operations. A well-
designed application may still experience performance
problems if the SQL it uses is poorly constructed. It is
much harder to write efficient SQL than it is to write
functionally correct SQL. As such, SQL tuning can help
signficantly improve a system’s health and performance.
The key to tuning SQL is to minimize the search path
that the database uses to find the data.

The target audience of this whitepaper includes
developers and database administrators who want to
improve the performance of their SQL queries.

General SQL Tuning Guidelines

The goals of writing any SQL statement include
delivering quick response times, using the least CPU
resources, and achieving the fewest number of I/O
operations. The following content provides best
practices for optimizing SQL performance.

Write Sensible Queries

Identify SQL statements that are taking a long time to
execute. Also identify SQL statements that involve the
joining of a large number of big tables and outer joins.
The simplest way to do this usually involves running the
individual statements using SQLPlus and timing them
(SET TIMING ON). Use EXPLAIN to look at the execution
plan of the statement. Look for any full table accesses
that look dubious. Remember, a full table scan of a small
table is often more efficient than access by rowid.

Check to see if there are any indexes that may help
performance. A quick way to do this is to run the
statement using the Rule Based Optimizer (RBO)
(SELECT /*+ RULE */). Under the RBO, if an index is
present, it will be used. The resulting execution plan may
give you some ideas as to which indexes to play around
with. You can then remove the RULE hint and replace it
with the specific index hints you require. This way, the
Cost Based Optimizer (CBO) will still be used for table
accesses where hints aren’t present. Remember, if data
volumes change over time, the hint that helped may

become a hindrance! For this reason, hints should be
avoided if possible, especially the /*+ RULE */ hint.

Try adding new indexes to the system to reduce
excessive full table scans. Typically, foreign key columns
should be indexed, as these are regularly used in join
conditions. On occasion it may be necessary to add
composite (concatenated) indexes that will only aid
individual queries. Remember, excessive indexing can
reduce INSERT, UPDATE and DELETE performance.

Tuning Subqueries

If the SQL contains subqueries, tune them. In fact, tune
them first. The main query will not perform well if the
subqueries can’t perform well themselves. If a join will
provide you with the functionality of the subquery, try the
join method first before trying the subquery method. Pay
attention to correlated subqueries, as they tend to be
very costly and CPU- insentive.

Limit the Number of Tables in a Join

There are several instances when the processing time
can be reduced several times by breaking the SQL
statement into smaller statements and writing a PL/
SQL block to reduce database calls. Also, packages
reduce I/O since all related functions and procedures
are cached together. Use the DBMS_SHARED_POOL
package to pin a SQL or PL/SQL area. To pin a set of
packages to the SQL area, start up the database and
make a reference to the objects that cause them to
be loaded. Use DBMS_SHARED_POOL.KEEP to pin it.
Pinning prevents memory fragmentation. It also helps to
reserve memory for specific programs.

Recursive Calls Should be Kept to a Minimum

Recursive calls are SQL statements that are triggered by
Oracle itself. Large amount of recursive SQL executed
by SYS could indicate space management activities
such as extent allocations taking place. This is not
scalable and impacts user response time. Recursive SQL
executed under another user ID is probably SQL and PL/
SQL, and this is not a problem.

SQL Performance Tuning Shalabh Mehrotra, Senior Solutions Architect

GlobalLogic Inc. www.globallogic.com 4

The Oracle trace utility tkprof provides information
about recursive calls. This value should be taken into
consideration when calculating resource requirement for
a process. Tkprof also provides library cache misses and
provides the username of the individual who executed
the SQL statement. Tkprof-generated statistics can be
stored in a table tkprof_table to be queried later.

Improving Parse Speed

Execution plans for SELECT statements are cached
by the server, but unless the exact same statement is
repeated, the stored execution plan details will not be
reused. Even differing spaces in the statement will cause
this lookup to fail. Use of bind variables allows you to
repeatedly use the same statements while changing the
WHERE clause criteria. Assuming the statement does
not have a cached execution plan, it must be parsed
before execution. The parse phase for statements can
be decreased by efficient use of aliasing.

Alias Usage

If an alias is not present, the engine must resolve which
tables own the specified columns. A short alias is parsed
more quickly than a long table name or alias. If possible,
reduce the alias to a single letter. The following is an
example:

Bad Statement
SELECT first_name, last_name, country FROM employee,
countries
WHERE country_id = id
AND last_name = ‘HALL’;

Good Statement
SELECT e.first_name, e.last_name, c.country FROM
employee e, countries c
WHERE e.country_id = c.id
AND e.last_name = ‘HALL’;

Driving Tables

The structure of the FROM and WHERE clauses of DML
statements can be tailored to improve the performance
of the statement. The rules vary depending on whether
the database engine is using the Rule or Cost-based
optimizer. The situation is further complicated by the fact

that the engine may perform a Merge Join or a Nested
Loop join to retrieve the data. Despite this challenge,
there are a few rules you can use to improve the
performance of your SQL.

Oracle processes result sets one table at a time. It starts
by retrieving all the data for the first (driving) table. Once
this data is retrieved, it is used to limit the number of
rows processed for subsequent (driven) tables. In the
case of multiple table joins, the driving table limits the
rows processed for the first driven table.

Once processed, this combined set of data is the driving
set for the second driven table, etc. Roughly translated,
this means that it is best to process tables that will
retrieve a small number of rows first. The optimizer
will do this to the best of its ability, regardless of the
structure of the DML, but the following factors may help.

Both the Rule and Cost-based optimizers select a driving
table for each DML statement. If a decision cannot be
made, the order of processing is from the end of the
FROM clause to the start. Therefore, you should always
place your driving table at the end of the FROM clause.
Always choose the table with less number of records as
the driving table. If three tables are being joined, select
the intersection tables as the driving table.

The intersection table is the table that has many tables
dependent on it. Subsequent driven tables should be
placed in order so that those retrieving the most rows
are nearer to the start of the FROM clause. However, the
WHERE clause should be written in the opposite order,
with the driving tables conditions first and the final driven
table last (example below).

FROM d, c, b, a
WHERE a.join_column = 12345
AND a.join_column = b.join_column AND b.join_column =
c.join_column AND c.join_column = d.join_column;

If we now want to limit the rows brought back from the
“D” table, we may write the following:

FROM d, c, b, a
WHERE a.join_column = 12345 AND a.join_column =
b.join_column AND b.join_column = c.join_column AND
c.join_column = d.join_column AND d.name = ‘JONES’;

SQL Performance Tuning Shalabh Mehrotra, Senior Solutions Architect

GlobalLogic Inc. www.globallogic.com 5

Depending on the number of rows and the presence of
indexes, Oracle may now pick “D” as the driving table.
Since “D” now has two limiting factors (join_column and
name), it may be a better candidate as a driving table.
The statement may be better written as:

FROM c, b, a, d
WHERE d.name = ‘JONES’
AND d.join_column = 12345
AND d.join_column = a.join_column AND a.join_column =
b.join_column AND b.join_column = c.join_column

This grouping of limiting factors will guide the optimizer
more efficiently, making table “D” return relatively few
rows, and so making it a more efficient driving table.
Remember, the order of the items in both the FROM
and WHERE clause will not force the optimizer to pick a
specific table as a driving table, but it may influence the
optimizer’s decision. The grouping of limiting conditions
onto a single table will reduce the number of rows
returned from that table, which will therefore make it a
stronger candidate for becoming the driving table. Also,
you can have control over which table will drive the query
through the use of the ORDERED hint. No matter what
order the optimizer is from, that order can be overridden
by the ORDERED hint. The key is to use the ORDERED
hint and vary the order of the tables to get the correct
order from a performance standpoint.

Caching Tables

Queries will execute much faster if the data they
reference is already cached. For small, frequently used
tables, performance may be improved by caching tables.
Normally, when full table scans occur, the cached data
is placed on the Least Recently Used (LRU) end of the
buffer cache. This means that it is the first data to be
paged out when more buffer space is required.

If the table is cached (ALTER TABLE employees
CACHE;), the data is placed on the Most Recently Used
(MRU) end of the buffer, and so it is less likely to be
paged out before it is re-queried. Caching tables may
alter the CBO’s path through the data and should not be
used without careful consideration.

Avoid Using Select * Clauses

The dynamic SQL column reference (*) gives you a way
to refer to all of the columns of a table. Do not use the
* feature because it is very inefficient -- the * has to
be converted to each column in turn. The SQL parser
handles all the field references by obtaining the names
of valid columns from the data dictionary and substitutes
them on the command line, which is time consuming.

Exists vs. In

The EXISTS function searches for the presence of a
single row that meets the stated criteria, as opposed
to the IN statement that looks for all occurrences. For
example:

PRODUCT - 1000 rows
ITEMS - 1000 rows

(A)
SELECT p.product_id
FROM products p
WHERE p.item_no IN (SELECT i.item_no
 FROM items i);

(B)
SELECT p.product_id
FROM products p
WHERE EXISTS (SELECT ‘1’
 FROM items i
 WHERE i.item_no = p.item_no)

For query A, all rows in ITEMS will be read for every row
in PRODUCTS. The effect will be 1,000,000 rows read
from ITEMS. In the case of query B, a maximum of 1 row
from ITEMS will be read for each row of PRODUCTS,
thus reducing the processing overhead of the statement.

Not Exists vs. Not In

In subquery statements such as the following, the NOT
IN clause causes an internal sort/ merge.

SELECT * FROM student
WHERE student_num NOT IN (SELECT student_num
FROM class)

SQL Performance Tuning Shalabh Mehrotra, Senior Solutions Architect

GlobalLogic Inc. www.globallogic.com 6

Instead, use:
SELECT * FROM student c
WHERE NOT EXISTS
(SELECT 1 FROM class a WHERE a.student_num =
c.student_num)

In with Minus vs. Not In for Non-Indexed Columns

In subquery statements such as the following, the NOT
IN clause causes an internal sort/ merge.

SELECT * FROM system_user
WHERE su_user_id NOT IN
(SELECT ac_user FROM account)

Instead, use:
SELECT * FROM system_user
WHERE su_user_id IN
(SELECT su_user_id FROM system_user
MINUS
SELECT ac_user FROM account)

Correlated Subqueries vs. Inline Views

Do not use code correlated subqueries in your
applications, as they will adversely impact system
performance. Instead, use inline views (subqueries in the
from clause of your select statements), which perform
orders of magnitude faster and are much more scalable.
The query below displays all employees who make more
than the average salary of the department in which they
work.

Before:

SELECT outer.*
 FROM emp outer
 WHERE outer.salary >
 (SELECT avg(salary)
 FROM emp inner
 WHERE inner.dept_id = outer.dept_id);

The preceding query contains a correlated subquery,
which is extremely inefficient and is very CPU- intensive.
The subquery will be run for every employee record
in the EMP table. As the number of records in EMP
increase, the performance can degrade exponentially.
When rewritten with inline views, the query is not

only functionally equivalent, but it is also significantly
more scalable and is guaranteed to outperform its
predecessor.

After:
SELECT e1.*
 FROM e1, (SELECT e2.dept_id dept_id, avg(e2.
salary) avg_sal
 FROM emp e2
 GROUP BY dept_id) dept_avg_sal
WHERE e1.dept_id = dept_avg_sal.dept_id
 AND e1.salary > dept_avg_sal.avg_sal;

Views Usage

Beware of SQL statements with views in them. Odd
as it may seem, Oracle does not necessarily execute
a view the same way by itself as it does in a complex
SQL statement containing tables. Consider including the
view definition in the main query by including its code
without the actual view name. Views can cause potential
performance problems when they have outer joins (CBO
goes haywire with them, even in 9I) or are considered
non-mergable views by Oracle.

Use Decode to Reduce Processing

Use DECODE when you want to scan same rows
repetitively or join the same table repetitively.

 SELECT count(*) , sum(sal) FROM emp
 WHERE deptno = 10
 AND ename LIKE ‘MILLER’;

 SELECT count(*) , sum(sal)
 FROM emp
 WHERE deptno = 20
 AND ename LIKE ‘MILLER’;

The same result can be achieved using a single query as
follows:

SELECT count(decode(deptno,20,’x’)) dept20_count,
 count(decode(deptno,10,’x’)) dept10_count,
 sum(decode(deptno,20,sal)) dept20_sal,
 sum(decode(deptno,10,sal)) dept10_sal
FROM emp
WHERE ename LIKE ‘MILLER’ ;

SQL Performance Tuning Shalabh Mehrotra, Senior Solutions Architect

GlobalLogic Inc. www.globallogic.com 7

Inequalities

If a query uses inequalities (item_no > 100), the optimizer
must estimate the number of rows returned before
it can decide the best way to retrieve the data. This
estimation is prone to errors. If you are aware of the data
and its distribution, then you can use optimizer hints to
encourage or discourage full table scans to improve
performance.

If an index is being used for a range scan on the
column in question, the performance can be improved
by substituting >= for >. In this case, item_no > 100
becomes item_no >= 101. In the first case, a full scan of
the index will occur. In the second case, Oracle jumps
straight to the first index entry with an item_no of 101 and
range scans from this point. For large indexes, this may
significantly reduce the number of blocks read.

Using Union in Place of Or

In general, always consider the UNION verb instead of
OR verb in the WHERE clauses. Using OR on an indexed
column causes the optimizer to perform a full-table scan
rather than an indexed retrieval.

Using Union All Instead of Union

The SORT operation is very expensive in terms of CPU
consumption. The UNION operation sorts the result set
to eliminate any rows that are within the sub-queries.
UNION ALL includes duplicate rows and does not require
a sort. Unless you require that these duplicate rows be
eliminated, use UNION ALL.

Influencing the Optimizer Using Hints

Hints are special instructions to the optimizer. You
can change the optimization goal for an individual
statement by using Hint. Some commonly used Hints
are CHOOSE, RULE, FULL(table_name), INDEX(table_
name index_name), USE_NL, USE_HASH(table_ name),
PARALLEL(table_name parallelism), etc.

SELECT /*+rule*/ name,
acct_allocation_percentage
FROM accounts WHERE account_id = 1200

The above SQL statement will be processed using the
RULE-based optimizer.

SELECT /*+ index(a, acct_id_ind) */ name, acct_
allocation_percentage
FROM accounts a
WHERE account_id = :acct_id AND client_id= :client_id

In the above SQL statement, an Index Hint has been
used to force the use of a particular index.

Presence Checking

If processing is conditional on the presence of certain
records in a table, you may use code such as:

SELECT count(*)
INTO v_count
FROM items
WHERE item_size = ‘SMALL’;

IF v_count = 0 THEN
-- Do processing related to no small items present
END IF;

If there are many small items, time and processing will be
lost retrieving multiple records that are not needed. This
would be better written as one of the following:

SELECT count(*)
INTO v_count
FROM items
WHERE item_size = ‘SMALL’
AND rownum = 1;

IF v_count = 0 THEN
 -- Do processing related to no small items present
END IF;
OR
BEGIN
 SELECT ‘1’
 INTO v_dummy
 FROM items
 WHERE item_size = ‘SMALL’
 AND rownum = 1;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- Do processing related to no small items present
END;

SQL Performance Tuning Shalabh Mehrotra, Senior Solutions Architect

GlobalLogic Inc. www.globallogic.com 8

In these examples, only a single record is retrieved in the
presence/absence check.

Using Indexes to Improve Performance

Indexes primarily exist to enhance performance. But they
do not come without a cost. Indexes must be updated
during INSERT, UPDATE and DELETE operations, which
may slow down performance. Some factors to consider
when using indexes include:

•	 Choose and use indexes appropriately. Indexes
should have high selectivity. Bitmapped indexes
improve performance when the index has fewer
distinct values like Male or Female.

•	 Avoid using functions like “UPPER” or “LOWER” on
the column that has an index. In case there is no
way that the function can be avoided, use Functional
Indexes.

•	 Index partitioning should be considered if the
table on which the index is based is partitioned.
Furthermore, all foreign keys must have indexes or
should form the leading part of Primary Key.

•	 Occasionally you may want to use a concatenated
index with the SELECT column. This is the most
favored solution when the index not only has all
the columns of the WHERE clause, but also the
columns of the SELECT clause. In this case there is
no need to access the table. You may also want to
use a concatenated index when all the columns of
the WHERE clause form the leading columns of the
index.

•	 When using 9i, you can take advantage of skip scans.
Index skip scans remove the limitation posed by
column positioning, as column order does not restrict
the use of the index.

•	 Large indexes should be rebuilt at regular intervals
to avoid data fragmentation. The frequency of
rebuilding depends on the extents of table inserts.

Why Indexes are Not Used

The presence of an index on a column does not
guarantee it will be used. The following is a list of factors
that may prevent an index from being used:

•	 The optimizer decides it would be more efficient
not to use the index. As a rough rule of thumb, an
index will be used on evenly distributed data if it
restricts the number of rows returned to 5% or less
of the total number of rows. In the case of randomly
distributed data, an index will be used if it restricts
the number of rows returned to 25% or less of the
total number of rows.

•	 You perform mathematical operations on the indexed
column, i.e. WHERE salary + 1 = 10001

•	 You concatenate a column, i.e. WHERE firstname || ‘ ‘
|| lastname = ‘JOHN JONES’

•	 You do not include the first column of a
concatenated index in the WHERE clause of your
statement. For the index to be used in a partial
match, the first column (leading- edge) must be used.

•	 The use of OR statements confuses the CBO. It
will rarely choose to use an index on a column
referenced using an OR statement. It will even ignore
optimizer hints in this situation. The only way to
guarantee the use of indexes in these situations is to
use the /*+ RULE */ hint.

•	 You use the is null operator on a column that is
indexed. In this situation, the optimizer will ignore the
index.

•	 You mix and match values with column data types.
This practice will cause the optimizer to ignore the
index. For example, if the column data type is a
number, do not use single quotes around the value
in the WHERE clause. Likewise, do not fail to use

SQL Performance Tuning Shalabh Mehrotra, Senior Solutions Architect

GlobalLogic Inc. www.globallogic.com 9

single quotes around a value when it is defined as
an alphanumeric column. For example, if a column
is defined as a varchar2(10), and if there is an index
built on that column, reference the column values
within single quotes. Even if you only store numbers
in it, you still need to use single quotes around your
values in the WHERE clause, as not doing so will
result in full table scan.

•	 When Oracle encounters a NOT, it will choose not
to use an index and will perform a full-table scan
instead. Remember, indexes are built on what is in a
table, not what isn’t in a table.

Conclusion

Eighty percent of your database performance problems
arise from bad SQL. Designing and developing optimal
SQL is quintessential to achieving scalable system
performance and consistent response times. The key to
tuning often comes down to how effectively you can tune
those single problem queries.

To tune effectively, you must know your data. Your
system is unique, so you must adjust your methods to
suit your system. A single index or a single query can
bring an entire system to a near standstill. Get those bad
SQL and fix them. Make it a habit...and stick with it.

References

1. Oracle 9I Documentation

2. Oracle Performance Tuning 101 by Gaja Krishna
Vaidyanatha, Kirtikumar Deshpande and John Kostelac

3. http://www.dba-village.com/dba/village/dvp_papers.
Main?CatA=45 by Sumit Popli and Puneet Goenka.

About GlobalLogic Inc.
GlobalLogic is a full-lifecycle product development services leader
that combines deep domain expertise and cross-industry experience
to connect makers with markets worldwide.Using insight gained
from working on innovative products and disruptive technologies,
we collaborate with customers to show them how strategic research
and development can become a tool for managing their future. We
build partnerships with market-defining business and technology
leaders who want to make amazing products, discover new revenue
opportunities, and accelerate time to market.

For more information, visit www.globallogic.com

Contact

Emily Younger
+1.512.394.7745
emily.younger@globallogic.com

