
Demystifying DevOps: A Guide for Product

Managers

- By Naveen Bhalla - Senior Consultant, Business Solutions

Introduction

In the fast-paced world of software development, achieving efficiency, collaboration, and
continuous delivery is crucial for product managers. This is where DevOps, a combination of
development and operations, plays a pivotal role. For product managers who may not have a
technical background, the DevOps landscape can seem daunting. However, by breaking it
down into its key components and understanding its fundamental concepts, DevOps can
become a powerful ally in delivering high-quality products swiftly and consistently.

Understanding DevOps
DevOps is a combination of software development (Dev) and operations (Ops). It’s defined as
a software engineering methodology that aims to integrate the work of software development
and software operations teams by facilitating a culture of collaboration and shared
responsibility. DevOps focuses on incremental development and the rapid delivery of
software. In this article, we will delve into DevOps components from Continuous Delivery to
Infrastructure as Code and learn how these elements integrate to streamline and automate
our development and deployment processes.

1. Continuous Delivery (CD):

CD extends CI by automatically deploying code to testing or staging environments after
successful CI. Product managers can take advantage of CD to have a clear view of the
progress of development and testing.

● 𝗕𝘂𝗶𝗹𝗱: Transform code into executable artifacts.
● 𝗨𝗻𝗶𝘁 𝗧𝗲𝘀𝘁𝘀: Assess individual parts of your application for correct behavior.
● 𝗗𝗲𝗽𝗹𝗼𝘆 𝘁𝗼 𝗦𝘁𝗮𝗴𝗲: Push the code to a staging environment for further testing.
● 𝗔𝗰𝗰𝗲𝗽𝘁𝗮𝗻𝗰𝗲 𝗧𝗲𝘀𝘁𝘀: Ensure the software meets the overall requirements and use cases.
● 𝗗𝗲𝗽𝗹𝗼𝘆 𝘁𝗼 𝗣𝗿𝗼𝗱𝘂𝗰𝘁𝗶𝗼𝗻: Push the final version of the code to the production environment

for end users.



2. Configuration Management System:

It helps in automating the configuration and management of a computer system, software,
and applications. The tools like Ansible use playbooks and modules to manage configurations
across servers.

3. Continuous Integration (CI):

Developers frequently merge their code changes into a central repository, after which the
automated builds and tests are run. It helps in quickly catching and fixing integration bugs.
Product managers benefit from CI as it ensures that new features are tested continuously,
leading to more stable and predictable releases.

4. Health Monitoring and Automated Checks:

Systems like Nagios can monitor infrastructure health and performance. Performance data
can be collected and visualized to keep track of system health over time.

● 𝗔𝗰𝘁𝗶𝘃𝗲 𝗖𝗵𝗲𝗰𝗸𝘀: Monitor specific parameters or metrics regularly.
● 𝗣𝗮𝘀𝘀𝗶𝘃𝗲 𝗖𝗵𝗲𝗰𝗸𝘀: Wait for notifications from the host about its status.

For product managers, this means gaining insights into how the product is performing,
identifying issues, and making data-driven decisions for future development.

5. Infrastructure as Code (IaC):

IaC allows infrastructure to be defined and managed using code. This concept is valuable for
product managers as it ensures that the environment for the product remains consistent
across development, testing, and production. Managing and provisioning infrastructure
through machine-readable definition files, rather than physical hardware configuration or
interactive configuration tools. Tools and languages like Terraform or CloudFormation scripts
help in automating the setup, ensuring replicable and consistent environments.

6. CICD Pipeline:

Represents the complete delivery process from code being checked into version control (like
Git) to it being deployed to production.

● 𝗩𝗲𝗿𝘀𝗶𝗼𝗻 𝗖𝗼𝗻𝘁𝗿𝗼𝗹: Systems like Git where code changes are stored and tracked.
● 𝗕𝘂𝗶𝗹𝗱: Convert code into executable artifacts.
● 𝗨𝗻𝗶𝘁 𝗧𝗲𝘀𝘁: Verify individual code components.
● 𝗗𝗲𝗽𝗹𝗼𝘆: Push the code to a given environment.
● 𝗔𝘂𝘁𝗼 𝗧𝗲𝘀𝘁: Automated testing for broader application use cases.



● 𝗠𝗲𝗮𝘀𝘂𝗿𝗲 & 𝗩𝗮𝗹𝗶𝗱𝗮𝘁𝗲: Check and validate the application's performance and user
feedback.

The Role of Product Management
On the other hand, Product Management focuses on understanding customer needs, defining
the product vision, and prioritizing features and enhancements. Product Managers act as the
bridge between the customer and the development team, ensuring that the product aligns
with market demands and delivers value to users.

The Intersection of DevOps and Product Management
Now, you might wonder, what does DevOps and Product Management have in common, and
why should they collaborate? Here's why this synergy matters:

● Faster Time-to-Market: DevOps practices speed up the development and
deployment process, allowing product managers to release features and updates more
quickly to meet market demands.

● Improved Collaboration: DevOps promotes collaboration between teams, resulting in
clearer communication and a shared understanding of the product's goals and status.

● Higher Quality Products: Automated testing and continuous integration help ensure
that products are thoroughly tested, reducing the likelihood of defects reaching the
end-users.

● Data-Driven Decision Making: Continuous monitoring provides valuable data that
product managers can use to make informed decisions about future development and
enhancements.

● Alignment with Business Goals: DevOps ensures that software is delivered efficiently
and reliably, while Product Management ensures that what is delivered aligns with
strategic business goals. The collaboration between these two roles helps ensure that
technology investments generate a positive return on investment.

● Continuous Feedback Loops: DevOps promotes a culture of continuous feedback
and improvement. Product Management leverages this to gather user feedback and
market data, enabling product teams to make informed decisions and refine the
product roadmap.

● User-Centric Approach: DevOps encourages a user-centric mindset, ensuring that
software is reliable, performant, and scalable. Product Managers can capitalize on this
by prioritizing user-driven features and improvements.



● Automation and Efficiency: DevOps tools and practices automate repetitive tasks in
the software delivery process, reducing the risk of human error and enhancing
efficiency. Product Managers can leverage this to ensure that their product
development process is streamlined and predictable.

Conclusion
DevOps is not just a set of tools; it's a mindset and a way of working that enhances product
development. As a product manager, embracing DevOps principles and understanding its
components can streamline your product delivery process, improve product quality, and help
you stay competitive in the market. Organizations that embrace the collaboration between
product management and DevOps are better positioned to adapt to changing market
conditions, deliver high-quality products, and ultimately achieve their strategic objectives. By
breaking down silos and fostering a culture of collaboration, companies can harness the full
potential of DevOps in Product Management, leading to a brighter and more agile future for
software development.


