
Global Practices
Big Data & Analytics Practice

A Lakehouse Implementation
Using Delta Lake

Arun Viswanathan

Table of Contents

Table of Contents 2
Abstract 2
Context and Problem 2

Taxonomy 5
Scoping Within the Enterprise City Map 6
Scoping Within the Data Platform 6

Implementing a Lakehouse Using Delta Lake 7
Features of Delta Lake 8
Internal Architecture of Delta Lake 9
Benefits of Delta Lake 11

Conclusion 12
References 12

Abstract
A data lake is a centralized repository that enables a cost–effective storage of large volumes of data
that provides a single source of truth (SOT). However, organizations face numerous challenges when
using data lakes built on top of cloud-native storage solutions. These challenges include a lack of data
consistency, unreliable data due to incomplete and corrupt files, performance issues, and the absence
of schema enforcement and validation. One of the popular implementations of Lakehouse architecture
is Databricks’ Delta Lake which overcomes these challenges with an open-source storage layer built on
top of existing data lake file storage formats such as Apache Parquet. We will first explore the
differences between the architectures associated with data warehouses, data lakes, and lakehouses.
Then, we take a glimpse under the hood to understand the inner workings of Delta Lake architecture.
Finally, this white paper provides insights into how Delta Lake offers solutions to common problems
encountered with data lakes such as ensuring data integrity with ACID transactions, providing scalable
metadata management with distributed processing, data versioning with time travel, or preventing data
corruption with schema enforcement.

Context and Problem
Data warehouses have existed for a long time to serve the needs of data analytics and business
intelligence applications. They can however get very expensive as data volumes go up and are not
optimally designed for handling unstructured data or semi-structured data. This led to the emergence of
data lakes built on top of cloud object storage systems.

Data lakes provide a single source of truth for data and enable the cost-effective storage of large
volumes of data. A data lake contains structured, semi-structured or unstructured data from many
sources in both raw and processed formats. Data lakes, however, lack critical features provided by data
warehouses such as support for transactions, enforcement of data quality, and the ability to mix
appends and reads.

Data teams started combining data lakes and data warehouses into a two-tier architecture that is now
dominant in the industry. In this data architecture, data is ingested into data lakes from different sources
using ETL pipelines, and stored in low-cost object storage in formats compatible with common machine
learning tools. A small part of the data is then ingested into a data warehouse using ETL pipelines for
consumption by BI and reporting tools. In the white paper “Lakehouse: A New Generation of Open

Platforms that Unify Data Warehousing and Advanced Analytics”¹, Ambrust, Ghodsi, Zin, and Zaharia
explore the evolution of data platform architectures over a period of time. Figure 1 shows this evolution.
This whitepaper also introduces the Lakehouse architecture from the perspective of the Databricks
founders and provides a good background for the readers on the lakehouse concepts. A separate
paper on Data Lakehouse will cover the core concepts of the data lakehouse architecture in more
detail.

Figure 1 - Evolution of Data Platform Architectures (Source)

While the cloud-based data lake and data warehouse architecture is inexpensive due to separate
storage (e.g., S3, ADLS) and compute (e.g., Redshift, Snowflake, Databricks), a two-tier architecture
can be highly complex with the following challenges:

● Reliability: Maintaining consistency between the data lake and warehouse can be difficult and
costly. Continuous engineering is required to perform ETL for data between the two systems
and make it available to high-performance data analytics and BI

● Limited support for advanced analytics: The leading machine learning frameworks, such as
PyTorch, XGBoost and TensorFlow, do not work well on top of warehouses. These systems
need to process large datasets using complex non-SQL code and reading this data from the
data warehouse via ODBC/JDBC is inefficient. Another related issue is the non-feasibility to
directly access the internal warehouse proprietary formats.

● Total cost of ownership: Users also end up paying more for the continuous ETL jobs and
additional storage cost for data copied to a warehouse. Additionally in commercial warehouses,

https://docs.google.com/presentation/d/158DngWiOdX-GptY3glGwrBvJU2NlYaucA7-Ue6T8lmo/edit#slide=id.g27bc3d9c0e6_0_0

data is stored in proprietary formats that can increase the cost of data migration to other
systems.

An alternative approach is to use the data lake to store data in open data formats directly for machine
learning and analytics as well. When data lakes are build on top of cloud-native storage solutions,
organizations face additional challenges that include data consistency, reliability, performance, and data
quality:

● The data could be incomplete and contain corrupt files because the distributed file storage or
cloud based storage solutions don’t support atomic transactions. This can result in broken
queries and failure of the related jobs.

● Cloud storage solutions are not ACID compliant. As a result, there is a lack of consistency
when mixing appends and reads or when both batching and streaming data write to the same
location.

● Another common issue with file storage is file size inconsistency i.e. files are either too small
or too big. Performance is adversely affected with the existence of too many files and can
require more time to access, open, and close files.

● Lack of schema enforcement and validation leads to data with inconsistent and low-quality
structure. Mismatching data types between files or partitions can also cause transaction issues.

● Cloud storage solutions do not support updates to the data within the files. This requires the
implementation of a custom strategy to handle updates.

Challenges with the existing data architecture leads us to consider and evaluate the Lakehouse
Architecture pattern which combines the most advantageous features of data lakes and data
warehouses into a single, integrated data management solution. It enables business intelligence and
machine learning on all data by combining the flexibility, cost-efficiency and scalability of data lakes with
the data management and ACID transactions of data warehouses. The Lakehouse architecture is
based on open direct-access data formats, such as Apache Parquet and Apache ORC with a metadata
layer on top to provide transactional views of the data lake and enable management features such as
transactions, rollbacks to old table versions, and zero-copy cloning.

The Lakehouse is supported by a recent family of open source systems such as Delta Lake, Apache
Iceberg, Apache Hudi and commercial products like Snowflake. The high level architecture for
Lakehouse is similar across the tool stack. Delta Lake is an open source framework that is also
available in the Databricks runtime with add-on proprietary features like Delta Engine, Photon, query
optimizations, etc. In the figure 2 below we provide a representative comparison of the architectures
across open source Lakehouse based on Delta Lake, Databricks Lakehouse based on Delta Lake and
the Snowflake Data Platform.

Figure 2 - Data Lakehouse Architecture Comparison (Source)

In this paper we explore Delta Lake, the open source storage layer that enables ACID transactions,
petabyte scale metadata handling, and a unified streaming and batch data processing on top of existing
data lakes, such as S3, ADLS, GCS, and HDFS.

Taxonomy
The taxonomies associated with Delta Lake require an understanding of some key terms. Data
architects who collaborate with enterprise data stakeholders should be familiar with some key terms:

Terms Description

Delta Lake An open-source project originally developed by Databricks and now managed
by the Linux Foundation.

ACID ACID (Atomicity, Consistency, Isolation, Durability) refers to the set of four
properties that define a transaction. Data storage systems that implement
these operations are known as transactional systems. An ACID transaction is
a database operation with these qualities. Each read, write, or modification of
a table must adhere to the four fundamental properties, which ACID
transactions ensure.

Data Lake A central location for storing data of any scale, both structured and
unstructured. It provides a single source of truth for the data and enables the
cost-effective storage of large volumes of data.

Data
Warehouses

Central data storage repositories that have combined data from different
sources and are intended to facilitate BI and analytics.

Data A data platform that merges the best aspects of data warehouses and data

https://docs.google.com/presentation/d/158DngWiOdX-GptY3glGwrBvJU2NlYaucA7-Ue6T8lmo/edit#slide=id.g24dbd60bd8e_0_5
https://en.wikipedia.org/wiki/ACID

Lakehouse lakes into one data management solution. It combines the flexibility,
cost-efficiency, and scale of data lakes with the data management and ACID
transactions of data warehouses, enabling BI and ML on all data.

Transaction Any operation that is handled as a single unit of work in databases and data
storage systems that either completes completely or does not complete at all
and leaves the storage system in a consistent state is referred to as a
transaction.

Scoping Within the Enterprise City Map
Figure 3 illustrates an Enterprise City Map showing the high-level flow of information from different
feature systems into the data platform.

Figure 3 - Enterprise City Map (Source)

Scoping Within the Data Platform
WIthin the data platform, the Lakehouse capability is located in the Data Storage logical component
which consists of transactional databases, object stores, search systems, etc. In Figure 4, the location
of the delta lake lakehouse capability is highlighted in blue within the Enterprise Data Platform.

Multiple systems function as data producers. Data from all of these systems is moved into the delta
lake by ingesting, wrangling, refining, and storing the data into the lakehouse. Data from the Delta
Lake can be then leveraged and utilized by data consumers via access interfaces such as APIs and
SQL endpoints.

https://docs.google.com/presentation/d/158DngWiOdX-GptY3glGwrBvJU2NlYaucA7-Ue6T8lmo/edit#slide=id.g1ce42da7ef6_0_293

Figure 4 - Enterprise Data Platform (Source)

Implementing a Lakehouse Using Delta Lake
Delta Lake helps in building a Lakehouse architecture on top of existing data lakes as shown in
Figure 5.

Figure 5 - Delta Lake Implementation (Source)

The Medallion architecture, which includes the Bronze, Silver, and Gold layers, is a common data
integration approach used along with the Delta Lake.The ingestion layer, also known as the Bronze
layer, is where data is first ingested and it helps create other downstream areas. The refined or Silver
layer, which holds the cleaned, transformed, and curated data, forms the foundation for use in the final
business layer. The final Gold layer stores the aggregated data that serves business needs such as BI
reporting, data science, and ML. The Medallion architecture is addressed in detail in a separate paper
here.

Delta Lake supports ACID transactions, scalable metadata handling, and a unified streaming and batch
data processing. Next, let’s take a look at these core functionalities in more detail.

https://docs.google.com/presentation/d/158DngWiOdX-GptY3glGwrBvJU2NlYaucA7-Ue6T8lmo/edit#slide=id.g1ce42da7ef6_0_10
https://docs.google.com/presentation/d/158DngWiOdX-GptY3glGwrBvJU2NlYaucA7-Ue6T8lmo/edit#slide=id.g23ec1d6ff94_0_0
https://practices.globallogic.com/practices/bigdata/recommended-reads/25

Features of Delta Lake
Following are some key features offered by the Delta Lake framework:

Key
Features

Delta Lake’s Support for Key Features

ACID
Transactions

Supports ACID transactions, that allow multiple queries and updates to be
made to a table concurrently and consistently. Tracks commits made to the
record directory and implements ACID transactions in a transaction log.
Serializable isolation levels ensure data consistency across multiple users.

Time Travel Tracks data version history, allowing users to access and revert (i.e. travel) to
previous versions of the data as needed. Two options are available for
accessing data versions:

● A timestamp or date string
● A version number

Scalable
Metadata
Management

Leveraging the distributed processing power of Spark, Delta Lake can handle
the metadata for petabyte-scale tables consisting of billions of files.

Schema
Management

Includes tools for data quality checks and data cleanup, helping users ensure
that their data is accurate and consistent. Schema enforcement automatically
validates and ensures that the data frame schema being written is compatible
with the table's schema. A schema evolution tool enables the delta tables to
automatically add new columns as soon as they are found.

Improved
Performance

Includes features such as data skipping and predicate pushdown which can
improve query performance.

Batch and
Stream
Processing

Integrates with both batch and stream processing systems (for example,
Apache Spark Streaming), allowing users to build batch and real-time data
pipelines.

Upserts and
Deletes

Complex use cases such as change-data-capture, slowly-changing-dimension
(SCD) operations, streaming upserts, etc. are supported through merge,
update, and delete operations.

Delta
Architecture

Allows the storage of Bronze (raw), Silver (refined), and Gold (aggregated)
versions of data that can be used as the Single Source of Truth for multiple
applications.

Integrations Integrates with numerous compute engines including Apache Spark, Apache
Flink, PrestoDB, Trino, and Hive. Also supports APIs for Java, Scala, Rust,
Ruby, and Python programming languages.

Upcoming
Features

In the latest release, Delta Lake offers advanced capabilities such as:
● Delta Universal Format to support Iceberg and Hudi table formats within

Delta Lake
● Delta Kernel project (for building Delta connectors)
● Liquid Clustering-based partitioning (to address the shortcomings of

Hive-style partitioning and current ZORDER clustering)

The core features of Delta lake are enabled by extending Parquet data files with a file-based
transaction log for ACID transactions and scalable metadata handling. In the next section we will go
under the hood to understand how Delta Lake achieves this.

Internal Architecture of Delta Lake
Delta Lake enables the Lakehouse Architecture by bringing a few key technology advancements that
include:

● Adding Metadata layers on top of existing data lakes,
● Designing a new query engine that provide high-performance SQL execution, and
● Supporting an optimized and consolidated access for both BI and data science / machine

learning tools

Figure 6 - Delta Lake Architecture Internals (Source)

Figure 6 shows the internals of the Delta Lake architecture. The Metadata layers sit on top of data
files which use open file formats (for example Parquet) and keep track of the files. Support for
streaming I/O (which does away with the requirement for message buses like Kafka), time travel to
previous table versions, schema enforcement and evolution, as well as data validation, are all made
possible by the metadata layers. On top of the Metadata layers are metadata APIs that provide a
common interface for the SQL API and dataframe APIs to access the underlying data. The
consuming applications such as BI and reporting tools or data science and ML programs consume
the data through the SQL and Dataframe APIs.

https://docs.google.com/presentation/d/158DngWiOdX-GptY3glGwrBvJU2NlYaucA7-Ue6T8lmo/edit#slide=id.g23a0d01a213_0_1

Delta Lake uses a Transaction Log (also known as the DeltaLog) that stores all transactions that
have been performed on a Delta Lake table from its creation.The DeltaLog provides a central
repository that keeps track of all changes made to the tables by end users. In case of any updates
made to the table, the transaction log of the table is updated with new changes. When a user runs a
query on the delta table, this DeltaLog is read first by a processing engine like Spark to check the
transactions posted to the table. This ensures that a user’s version of a table is always synchronized
with the master record as of the most recent query, and that users cannot make divergent, conflicting
changes to a table.

The DeltaLog implementation also ensures support for ACID transactions within Delta Lake. As the
transactions that execute fully and completely are recorded in the log, using that record as the single
source of truth guarantees atomicity to Delta Lake. Whenever a user performs an operation (for e.g.
INSERT, UPDATE or DELETE) to modify a table, the operation is broken down into a series of steps
based on one or more of the actions like add/remove file, metadata update, set transaction, change
protocol or commit info. These actions are then recorded as ordered, atomic units known as commits.
So whenever a Delta Lake table is created, a _delta_log subdirectory is created under that table
directory to store the transaction logs. Any changes to the table are recorded as ordered, atomic
commits in the transaction log. Delta Lake periodically also generates checkpoint files which help with
enhanced read performance. The checkpoint files include the entire state of the table at a point in
time saved in native Parquet format. Figure 7 shows the sample contents of the delta lake table.

Figure 7- DeltaLog Transaction Logs (Source)

For concurrency, Delta Lake employs an approach known as optimistic concurrency control. For
concurrent transactions, Delta Lake goes with the assumption that changes made to a table by
different users can be combined without any conflicts. This approach ensures very high performance
when dealing with petabytes of data. Delta Lake handles this by implementing the rule of mutual
exclusion for figuring out how commits should be ordered (also known as serializability in databases),
and determining a path of action if two or more commits are made concurrently. This rule ensures that
the final state of the table whether after multiple concurrent writes or serial writes remains consistent

https://docs.google.com/presentation/d/158DngWiOdX-GptY3glGwrBvJU2NlYaucA7-Ue6T8lmo/edit#slide=id.g23ec1d6ff94_0_8

thus delivering on the ACID principle of isolation. Finally, since all of the transactions made on Delta
Lake tables are stored directly to underlying cloud storage which offer the highest durability.

Since the transaction log provides a detailed set of instructions on what changes were done to the
table since it was created, we can easily recreate the state of a table at any point in time by starting
with an original table, and processing only commits made prior to that point. This ability enables the
versioning of data or what is known as “time travel”.

Schema enforcement or schema validation feature rejects data being written to a table that does not
match the table's original schema thus ensuring data quality. Delta Lake uses an approach called
schema validation on write where all new writes to a table are checked for compatibility while writing
into the table. In case of incompatibility in the schema the entire transaction is canceled, and an
exception is raised to the user regarding the mismatch.

For tables which expect schema to change over a period of time, the Schema evolution feature
provides that functionality. By enabling the mergeSchema option, the schema of the table can
automatically adapt to include one or more new columns while performing an append or overwrite
operation. Delta Lake supports added nested fields as well to the schema by adding these fields to
the end of their respective struct columns.

Benefits of Delta Lake
In this white paper, we explored the core functionalities provided by Delta Lake and how they are
implemented. These core functionalities of Delta Lake provide the following benefits for the lakehouse
architecture:

1. Increasing data freshness for data analytics – The lakehouses strategy enables enterprises
to access the most recent and freshest data for use in BI, reporting, and insights, in contrast to
the 2-tier data architecture approach which may contain outdated data. As a result,
organizations can make decisions based on the most recent data.

2. Self-service data experience – Organizations can add more value by giving users faster
access to data by implementing data lakehouses in their operations. Organizations can
empower users to do tasks without a high level of technical expertise by leveraging the power of
high-performance queries, more accessible data access, flexibility, and the use of data
management principles. Additionally, end users have a better user experience with performance
optimization capabilities such as caching hot data in RAM and SSDs, data layout optimizations
to cluster co-accessed data, auxiliary data structures such as statistics and indexes, and
vectorized execution on modern CPUs.

3. Unified cloud data lakehouse management – The data landscape is made simpler by
combining the capabilities of the data warehouse and data lake, and data professionals no
longer need to move data often between various platforms. Instead, all data management tasks
are carried out within a single system, which is simpler to maintain and requires less time and
effort.

4. Layered data architecture – The data lakehouse solution recommends a three-layered
approach to handling data coming from producers to consumers. These layers are raw, refined,
and aggregated. Because different ETL procedures take place before the data enters the
curated layer, this layered data architecture helps to increase data quality.

5. No data lock-ins – Data lakehouses utilize open storage formats like Parquet file format for
easy storage and retrieval, which allows easy interoperability among different systems. Hence,
organizations can quickly build their data lakehouse by leveraging these tools. Utilizing open
data formats means no data lock-ins, as there is a free exchange of data where rules occur by
using an open decision-making process.

6. Achieve compliance - Companies are required by laws like the General Data Protection
Regulation (GDPR) and the California Consumer Protection Act (CCPA) to delete consumer
data upon request from the person whose information it is. In a typical Parquet data lake,
updating or deleting data requires a lot of computing power. Contrarily, Delta Lake offers
DELETE and UPDATE operations for simple table data editing.

Conclusion
This white paper first explored the challenges with existing data warehouses and data lakes based
architectures and how lakehouse architecture provides an alternative solution. Delta Lake is a popular
framework that supports the lakehouse architecture, and brings additional reliability and performance
features to the data lake. It provides a number of features that ensure accurate and consistent data in
the data lake. Delta Lake also supports different compute engines including Spark, PrestoDB, Flink,
Trino, Hive and provides APIs for integration through Scala, Java, Rust, Ruby, and Python. Overall,
Delta Lake can be a useful tool for building a Lakehouse Architecture by adding transactional
capabilities to data stored in Apache Parquet files. But it is not a one-size-fits-all solution and may not
be the best choice for every situation. The Data Architect should carefully weigh in all the strengths and
weaknesses of the platform within the context of an organization's requirements and make an informed
decision.

References
1. Armbrust et al. Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing

and Advanced Analytics
2. Armbrust et al. Delta Lake: High-Performance ACID Table Storage over Cloud Object Stores.

PVLDB, 13(12): 3411-3424, 2020
3. What is a Data Lakehouse?
4. Delta Lake
5. Delta Lakes: A Comprehensive Guide 101
6. Demystifying Delta Lake. In the real data world, the majority of… | by Saurabh Mishra | Analytics

Vidhya | Medium
7. Diving Into Delta Lake: Unpacking The Transaction Log
8. Top 5 Reasons to Convert Your Cloud Data Lake to a Delta Lake - The Databricks Blog

https://cs.stanford.edu/~matei/papers/2021/cidr_lakehouse.pdf
https://cs.stanford.edu/~matei/papers/2021/cidr_lakehouse.pdf
https://dl.acm.org/doi/10.14778/3415478.3415560
https://www.databricks.com/glossary/data-lakehouse
https://delta.io/
https://hevodata.com/learn/delta-lake/
https://medium.com/analytics-vidhya/demystifying-delta-lake-d15869fd3470
https://medium.com/analytics-vidhya/demystifying-delta-lake-d15869fd3470
https://www.databricks.com/blog/2019/08/21/diving-into-delta-lake-unpacking-the-transaction-log.html
https://www.databricks.com/blog/2020/08/21/top-5-reasons-to-convert-your-cloud-data-lake-to-a-delta-lake.html

