
www.globallogic.com

Strategies for

With Microservices

Digital
Transformation

BOTTOM-UP AND
TOP-DOWN
APPROACHES

Strategies for Digital Transformation with Microservices | 2

Digital transformation is a process that relies not only on
technology, but also on other digital transformation driving
forces such as people and skills development, alliance
development, customer experience digitalization and
enhancement, value add across products, and innovation.
In all digital transformation initiatives, technology is the
primary enabler that provides the necessary building blocks
to empower change across an organization.

Microservices have proven to be a bullet-proof approach to
transforming a business by attacking existing technical
debt, simplifying complex current scenarios, and using a

clean and robust microservice architecture. In doing so, it
effectively replaces a part of an existing legacy system with
a next-gen software that supports microservices by follow-
ing the strangler pattern. This pattern keeps transforming
the existing solution until the whole monolithic legacy appli-
cation has been migrated completely and decommis-
sioned.

This kind of approach, in which technical debt reduction is
the ultimate goal, is usually called a bottom-up approach
for digital transformation. Such transformation usually
occurs at the bottom of an IT pyramid, where integrations
and platforms replace existing technical debt.

Figure 1: Approaches for Digital Transformation with Microservices

Strategies for Digital Transformation with Microservices | 3

A bottom-up strategy mostly follows a brown-field
approach for development, with software pieces belonging
both to the legacy system and the next-gen microservice
architecture. They both co-exist for some time, until the

migration of corresponding legacy system to microser-
vices, is complete. Characterised by a strangler pattern
approach, the bottom-up strategy is most likely tactical and
designed to deliver fast and short-term results.

For example, if scalability, availability, consistency and
performance quality are compromised, a rearchi-
tect-and-shift approach can be followed, in order to re-en-
gineer processes and make them more robust. Once the
re-engineering is complete, it can be moved to the cloud.
This is one of the most widely-known approaches to start
transforming a business by reducing technical debt.

Another important benefit of the rearchitect-and-shift
approach is that it leverages existing cloud capabilities;
reducing time, effort and the total cost of ownership (TCO)
for the solution. Some candidate use cases must be identi-
fied to further develop a rearchitect-and-shift strategy on
how to re-engineer the use case with an MSA approach.

On the other hand, the top-down approach is strategic. It

starts with transforming the business domains and
processes, by re-designing a part of a business process
using microservices. This approach is mostly considered
for mid-to-long term engagements, involving complex tech-
niques such as domain driven decomposition (DDD) and
event storming. In such cases, existing business domain
applications can be eventually removed, merged, increased
in size, or transformed as necessary, based on high-level
goals and long-term objectives.

In this business-driven approach, pain areas must be
identified first, for prioritization and cost/impact analysis.
The scope could extend to the whole business which may
include not only technology, but also a re-design of the
business processes and business re-architecture. Cost/im-
pact analysis must be performed on a case-by-case basis.

Figure 2: Strangler Pattern for Microservice Migration

Figure 3: Sample Technology and Business Domains

Strategies for Digital Transformation with Microservices | 4

BOTTOM-UP STRATEGY OR “TACTI-
CAL” APPROACH

Following a tactical approach, the first steps towards
business transformation would be to reduce technical debt
and remove any factor that could be deterring business
expansion. This kind of approach is usually led by digital
experts.

An organization can have numerous and varied pain-points
across different business processes and business units.
These pain-points can be directly related to the existing
technical debt. An organization is probably relying on tech-
nology which is a decade or two old and was relevant in the
past. However, due to digitalization 2.0, it might not meet
requisite quality attributes such as platform scalability,
performance, consistency, reliability, robustness, customer
experience, sensitivity and latency. Consequently, an orga-
nization struggles to meet customer expectations.

A rearchitect-and-shift approach with event-driven
microservices is recommended to:

• Reduce coupling between components

• Leverage the benefits of microservice approach

• Reduce the overall time-to-deliver

• Develop scalability with independent agile teams

• Increase overall solution reusability by means of an
 API-led design and reduced friction

• Re-design and optimize the use case

The most effective candidate use cases for rearchi-
tect-and-shift approach are those that do not involve
business logic and are basic, scoped around backend-level
integrations. If a candidate use case involves the transfor-
mation of business logic, it should be considered for the
top-down approach instead.

Another strategy, lift-and-shift, focuses on moving the
existing software, with minimal configuration changes, to
the cloud. This strategy is suited for software monoliths that
are still on-premise and are not likely to get re-architected;
but, there are strong reasons for moving them to cloud.
One of the probable reasons would be cost. The cost of
keeping the hardware up and running on-premise, along
with the indirect costs including refrigeration, power,
back-up, outsourced server maintenance procedure and
licensing, can easily increase the TCO.

Figure 4: Rearchitect-and-Shift Approach

Strategies for Digital Transformation with Microservices | 5

Figure 5: Lift and Shift Approach

BROWN-FIELD AND IMPLEMENTATION
REUSABILITY APPROACHES

When rearchitecting or lifting an existing use case, a
brown-field approach should be followed. The re-engi-
neered piece(s) of software may coexist with the existing
legacy functionalities, even when the code has been refac-
tored to microservices. These microservices must still
interact with existing services and components to some
extent.

In the case of rearchitect-and-lift strategy, a part of the
existing use case implementation may be re-used, to some
extent. However, the intention is to transform into microser-
vices as much as possible but there are cases where some
components may still remain unchanged due to different
reasons.

While planning, three different reusability approaches
can be considered, depending on the extent of usage

of the existing implementation:

• Black-Box Reuse: Reuse: In black-box reuse, a compo-
nent is directly reused without modification. A component
can be reused as it is or reused through inheritance if the
programmer creates a specialized subclass of an existing
class component. This approach helps with easy mainte-
nance and evolution of software systems.

• White-Box Reuse: In white-box reuse, programmers
reuse the component after they have modified the compo-
nents to their needs. White-box reuse does not facilitate
easy maintenance and evolution of software systems but it
can reduce development time.

• Glass-Box Reuse: In glass-box reuse, programmers do
not directly reuse the component; instead, they use it as an
example for their own development. For instance, program-
mers can look at examples to find out how a program plan
is realized and build their own system through analogy.

Strategies for Digital Transformation with Microservices | 6

TOP-DOWN STRATEGY OR “STRATE-
GICAL” APPROACH

The strategical approach is targeted at the business
domain level. Following this approach, business domains
and specific areas should be identified as candidates for
digital transformation. Additionally, it requires a technology
shift and a complete business re-design. This approach is
usually led by business experts followed by digital experts.

Such a transformation demands different capabilities
such as:

• Business/Enterprise Architecture Areas: In order to
understand how the current domain area can be re-archi-
tected for business and aligned with the overall business
vision and goals, not only enterprise/business architects,
but also specific business domain stakeholders must be
involved at this stage. This will help get consensus and
ensure consistency. Business architects should also deal
with the inherent risk and find ways to mitigate it over time.
Enterprise architects must have knowledge of the business
domain and the business logic under revision.

• Business Analysis Areas: In order to understand the
impact of the changes being proposed, analysis is essen-
tial. Some changes can indirectly and unintentionally
impact other business domain areas and complicate the
initiative. Also, business analysts should be involved in
order to foresee how the proposed change will affect the
business value chain and take appropriate actions based
on the outcome.

• Solution Architecture: Solution architecture represents
the IT/technical mapping for the change initiative that is
being proposed by the enterprise architecture team. It is
probable that a proposal will be challenged, based on
concerns. Such factors must be resolved before embarking
on a business change. A solution architect has a wider
vision, including constraints, risks, limitations, technology
stack and budgeting concerns. A solution architect works
on building the solution and technical blueprints based on
the high-level enterprise architecture requirements, consid-
ering all the factors involved, to reduce any existing gap that
may lead to a poor execution. So, maintaining high
standards is a must for them.

Figure 6: Top-Down Approach

DEVOPS
CHALLENGES FOR
MICROSERVICE
APPROACH

Strategies for Digital Transformation with Microservices | 7

Any digital transformation engagement with microservices
is tied, to some extent, to the existing DevOps capability in
the organization. This is required from the very beginning of
any initiative, in order to set the basic infrastructure on
which microservices can be deployed, evolved, monitored
and eventually retired.

There can be multiple duties that are typically delegat-
ed to the DevOps capability, depending on the specific
stage of the software delivery life cycle (SDLC):

• Continuous integration/continuous deployment
(CI/CD) Pipeline Setup: A robust SDLC relies on a robust
CI/CD pipeline to ensure that only solid, robust and secure
codes are being pushed. It is DevOps’ responsibility to set
it up properly, either by leveraging some components on
the cloud or by deploying a complete CI/CD on-premises,
by following specific requirements. This is usually where
DevOps invests most time and to some extent, can be
considered a bottleneck, leading to delays in development.

• Environment Setup: While migrating existing business
capabilities to microservices, specific environments may be
required to deploy and test them. The exact number of
environments have to be provisioned for – either on-prem-
ises or cloud-native, depending on specific project require-
ments and constraints. However, it’s not unusual to find
multiple environments being allocated for Development,
Testing, Staging, QA and Production. Setting up each
environment, either manually or programmatically, is the
responsibility of the DevOps team, and they must make

provision for any necessary resource as required, such as
elastic filesystems, queues, database tables, bucket
storage, compute capacity, or even a complete analytics
platform. Environment setup is time intensive and clearly
requires maximum effort from the DevOps team to set it
properly, and keep it running.

• Troubleshooting CI/CD components: As microservice
code gets pushed into a central repository, it is built and
deployed in a target environment by means of an automat-
ed CI/CD pipeline. If problems arise through the pipeline
itself, it would be the DevOps team’s responsibility to
perform proper root cause analysis (RCA) and resolve the
issue. In the process, the CI/CD pipeline improves over
time and becomes a mature CI/CD pipeline, which can
detect issues sooner and avoid major outages once the
pace of digital transformation increases.

• Troubleshooting target environments: It’s not unusual
to start disclosing issues on the infrastructure already provi-
sioned for by DevOps when the first microservice or a
couple of microservices are being deployed to a target
environment. In fact, it is expected to happen to some
extent. Since resources were provisioned completely from
scratch, there could be multiple reasons for which they
could stop working such as mis-configurations, bad
resource provisioning on the platform, and bugs on either
the on-premise or on-cloud platform. Issues can deter
project progression, preventing features from being deliv-
ered by the due date and that makes troubleshooting one
of the most important duties of a mature DevOps team.

Strategies for Digital Transformation with Microservices | 8

• Identifying code issues at runtime: Even with a robust
CI/CD in place, with CAS and SCA well implemented, a
problematic code can get pushed and delivered to the
pipeline, and eventually, the target environment. A bad
code can cause multiple issues like ridiculously spiking
CPU, memory footprint increasing over time due to
memory leak condition, and race condition in threading
caused by unwanted interactions of code with non-com-
patible libraries. Sometimes, such issues require time and a
deep-dive RCA to figure out the real problem and not just
the symptom/s.

• Set Basic Monitoring: Real-time monitoring of compo-
nent and resources is essential to react to notifications and
alerts rapidly, based on pre-configured monitoring
template, deployed either as application performance man-
agement (APM) or other cross-platform monitoring
solutions. Monitoring is especially important for upper
environments such as user acceptance testing (UAT) or
Production, in order to detect metrics that might go
out-of-thresholds and possibly, correct the condition either
automatically, in the form of corrective control, or manually.
While APM is the responsibility of an architect, DevOps is
responsible for installing, deploying and setting up the
appropriate monitoring templates, based on requirements
from SecOps or Operations.

IMPORTANCE OF DEVOPS ROLE IN
DIGITAL TRANSFORMATION

In large digital transformation initiatives, following Agile or
scaled-agile (SAFe) methodologies, with multiple scrum
teams running across Agile Trains, hundreds of developers
could be divided into small scrum teams of 5-10 individuals
each, with each team being responsible for the develop-
ment of one or two microservices. Such teams may have
multiple needs from the DevOps teams, not only in terms of
CI/CD and code (which increases in complexity and lines

committed over time), but also infrastructure/components.
In such a scenario, a single DevOps team can hardly cope
with the increasing demand and the only option is to
scale-up.

DevOps can face limitations in the case of smaller projects
as well. The most common would be the lack of organiza-
tional DevOps capability planning for the long-term. It is
usual to find many engagements where DevOps capability
starts growing but due to one reason or another, gets
downsized or even dismantled completely. This could be
due to budgetary or high-level business management
decisions.

It is important to point out that DevOps is a discipline in
itself. DevOps professionals generally have significant
experience in Operations, Development and QA, such as
an SME in the Ops side rather than on the Dev side.
Undoubtedly, DevOps engineers must have knowledge
about coding languages, debugging codes and performing
deep-dive on performance issues. DevOps teams also
have a strategic role to play as they become the first point
of interaction for a Dev team for coding best practices and
coding patterns.

Projects can even get dismantled because of multiple
performance issues, lack of code quality, unstable
platforms, and a decrease in software delivery pace.
Following this, the DevOps capability can be diminished or
dismantled. Unfortunately, this happens too often, espe-
cially in projects where the vision and importance of a solid
DevOps discipline hasn’t been properly introduced to the
client in the early stages.

DevOps not only supports Dev teams, by looking into the
details of infrastructure/environments and platforms opera-
tions, but also takes care of issues that arise on a
day-to-day basis. They can also check the quality of a
software being produced, by becoming coding advisors
and developers, besides SME on Operations.

Figure 7: DevOps as the convergence of Dev, Ops and QA

Strategies for Digital Transformation with Microservices | 9

DEVOPS LIMITATIONS ON DIGITAL
TRANSFORMATION COMMITMENT

One of the most important yet undervalued tasks of
DevOps is to get involved in setting up an environment.
When we say environment, we can refer to anything – from
a complete CI/CD pipeline, which is required to set up
SDLC automation, to a whole set of PaaS resources,
frameworks or platforms, required by the software. In our
case, it is microservices.

A microservice can be resource-intensive. If you are
going to deploy a microservice toperform event-based
communication, you need:

• To make provision for an entity partition for entity
persistence

• An event hub and topics for event-based communication

• An API Proxy if you want to expose the microservice

• A Kubernetes cluster’s namespace for processing

• Different components that make up the microservice
chassis

Some other microservices may require an analytics engine
instance, a data warehouse instance, a database with
some pre-existing tables and a real-time speed data layer.

Deploying and maintaining such components can be time
consuming and lead to issues as the project scales up, and
the number of Dev teams and microservice applications
increases. As the process of digital transformation
progresses, the pressure on DevOps increases, often
reaching an inflection point, where DevOps cannot deal
with the backlog. If DevOps cannot scale, it can become a
bottleneck and stall the digital transformation commitment
(DT Commitment). This is the risk that should be avoided
because delaying a DT Commitment (percentage of the
whole digital transformation, at the program level, that has
been accomplished already) can prove to be expensive.

GETTING RID OF DEVOPS LIMITATIONS BY
MEANS OF PLATFORMIZATION

Instead of provisioning, customizing and tailoring
the infrastructure stack to the specific needs of a
project manually, an automated delivery methodolo-
gy can be used.

An automated infrastructure stack delivery platform (IDP)
takes care of programmatically defining the stack by means
of a specification that needs to be written by the end user.
Once defined, it can be repeated as many times as
required, creating multiple stacks based on the same
definition, reducing the effort required to create different
environments with the similar stack, components and
configurations in place. This saves time and cost, and
consequently reduces the time-to-deliver for new solutions
because the infrastructure can be created by means of a
specification instead of creating each component manually.

In terms of IDP, a specification can be defined through a
template, which, written in a specific pre-defined normal-
ized language, can be used to create any necessary
resource following the infrastructure-as-code (IaC) para-
digm

Platformization is the concept for which an automated
infrastructure delivery platform is leveraged in order to
speed up the SDLC, by reducing the time required to provi-
sion for environments and components, both on-premises
and on cloud (PaaS). This includes PaaS components,
configurations and ready-made codes that can be used as
an accelerator to get something up and running on time.
The platformization approach has proven to drastically
reduce TCO for SDLC, ensuring timely ramp-up of
solutions. It also reduces time-to-deliver for new features to
be introduced and increases the delivery rate for software
and digital transformation.

Platformization also empowers business by leveraging
technology for digital transformation, leading to a
business-driven technology approach instead of the tech-
nology-driven business approach. The latter, although the
most popular approach for years now, limits business
expansion due to the existing infrastructure and technolo-
gy.

Strategies for Digital Transformation with Microservices | 10

The diagram on next page (Figure 9) represents the total DT
Commitment with passage of time. The gold curve
represents the real DevOps backlog. The red line
represents the DT Commitment without platformization –
the plateau areas represent time required by DevOps to
fully provision artifacts and resources. Once provisioned,
the DT Commitment is increased. The blue line represents

the DT Commitment employing the platformization
approach. It would be good to note that this line stays close
to the gold line which implies that DT Commitment stays
close to backlog. The dotted green line represents the DT
Commitment threshold, that is reached once the DevOps
team reaches the inflection point.

Figure 8: Platformization Concept

Figure 9: Platformization vs Non-PlatformizationFigure 9: Platformization vs Non-Platformization

Strategies for Digital Transformation with Microservices | 11

Having said that, it is important to mention that in order to
guarantee success in platformization approach, it should
be adopted across an organization, especially for
large-scale digital transformation engagements.

Simply put, IDP should be promoted within the organization
through formal pre-sales activities to ensure that all the

teams are aligned with the vision and value of such a
platformization effort. Without complete adoption, outcome
can be compromised and unsatisfactory. When adopted
completely and implemented properly, an organization can
benefit from the overall digital transformation approach, by
reducing TCO, relieving DevOps backlog pressure, and
maximizing the pace of DT Commitment.

Figure 10: Traditional N-Tier Provisioning Model

PLATFORMIZATION ADOPTION

One of the most important goals of platformization is to
empower developers and help them create necessary
infrastructure in a short span of time. On the other hand, in

traditional N-tier deployment models (as shown in Figure
155), full DevOps capability is required to get all the neces-
sary artifacts provisioned across different applications, in a
timely manner. Shortening the provisioning cycles decreas-
es the overall time-to-deliver and shortens SDLC as well.

About GlobalLogic

Strategies for Digital Transformation with Microservices | 12

GlobalLogic is a leader in digital product engineering. We
help our clients design and build innovative products,
platforms, and digital experiences for the modern world. By
integrating strategic design, complex engineering, and
vertical industry expertise—we help our clients imagine
what’s possible and accelerate their transition into tomor-
row’s digital businesses.

Headquartered in Silicon Valley, GlobalLogic operates
design studios and engineering centers around the world,
extending our deep expertise to customers in the commu-
nications, automotive, healthcare, technology, media and
entertainment, manufacturing, and semiconductor indus-
tries.

www.globallogic.com

