
DevOps & Linux
The five objectives for a form

Topic 1: The Linux Community and a Career in Open Source

1.1 Linux Evolution and Popular Operating Systems (weight: 2)

Weight 2

Description Knowledge of Linux development and major distributions.

Key Knowledge Areas:

■ Distributions
■ Containers vs Virtualization
■ Linux in the Cloud

The following is a partial list of the used files, terms and utilities:

■ DEB-based: Debian, Ubuntu
■ RPM-based: CentOS, Red Hat
■ Docker Base Images: Distroless, Alpine

1.2 Major Open Source Applications (weight: 2)

Weight 2

Description Awareness of major applications as well as their uses and development.

Key Knowledge Areas:

■ Cloud applications
■ Server applications
■ Development languages
■ Package management tools and repositories

The following is a partial list of the used files, terms and utilities:

■ How to manage own Cloud from command line
■ Apache HTTPD, NGINX, MariaDB, MySQL, NFS, Samba
■ C, Java, JavaScript, Perl, shell, Python, PHP
■ dpkg, apt-get, rpm, yum

1.3 Open Source Software and Licensing (weight: 1)

Weight 1

Description Open communities and licensing Open Source Software for business.

Key Knowledge Areas:

■ Open source philosophy
■ Open source licensing
■ Free Software Foundation (FSF), Open Source Initiative (OSI)

The following is a partial list of the used files, terms and utilities:

■ Copyleft, Permissive
■ GPL, BSD, Creative Commons
■ Free Software, Open Source Software, FOSS, FLOSS
■ Open source business models

1.4 ICT Skills and Working in Linux (weight: 2)

Weight 2

Description Basic Information and Communication Technology (ICT) skills and working in Linux.

Key Knowledge Areas:

■ Cloud skills
■ Getting to the command line
■ Industry uses of Linux, cloud computing and virtualization

The following is a partial list of the used files, terms and utilities:

■ Using a Cloud, open built-in command line terminal
■ Terminal issues
■ Password issues
■ Privacy issues and tools

Topic 2: Finding Your Way on a Linux System

2.1 Command Line Basics (weight: 3)

Weight 3

Description Basics of using the Linux command line.

Key Knowledge Areas:

■ Basic shell
■ Command line syntax
■ Variables
■ Quoting

The following is a partial list of the used files, terms and utilities:

■ Bash
■ echo
■ history
■ PATH environment variable
■ export
■ type

2.2 Using the Command Line to Get Help (weight: 2)

Weight 2

Description Running help commands and navigation of the various help systems.

Key Knowledge Areas:

■ Man pages
■ Info pages

The following is a partial list of the used files, terms and utilities:

■ man
■ info
■ /usr/share/doc/
■ locate

2.3 Using Directories and Listing Files (weight: 2)

Weight 2

Description Navigation of home and system directories and listing files in various locations.

Key Knowledge Areas:

■ Files, directories
■ Hidden files and directories
■ Home directories
■ Absolute and relative paths

The following is a partial list of the used files, terms and utilities:

■ Common options for ls
■ Recursive listings
■ cd
■ . and ..
■ home and ~

2.4 Creating, Moving and Deleting Files (weight: 2)

Weight 2

Description Create, move and delete files and directories under the home directory.

Key Knowledge Areas:

■ Files and directories
■ Case sensitivity
■ Simple globbing

The following is a partial list of the used files, terms and utilities:

■ mv, cp, rm, touch
■ mkdir, rmdir

Topic 3: The Power of the Command Line

3.1 Archiving Files on the Command Line (weight: 2)

Weight 2

Description Archiving files in the user home directory.

Key Knowledge Areas:

■ Files, directories
■ Archives, compression

The following is a partial list of the used files, terms and utilities:

■ tar
■ Common tar options
■ gzip, bzip2, xz
■ zip, unzip

3.2 Searching and Extracting Data from Files (weight: 3)

Weight 3

Description Search and extract data from files in the home directory.

Key Knowledge Areas:

■ Command line pipes
■ I/O redirection
■ Basic Regular Expressions using ., [], *, and ?

The following is a partial list of the used files, terms and utilities:

■ grep
■ less
■ cat, head, tail
■ sort
■ cut
■ wc

3.3 Turning Commands into a Script (weight: 4)

Weight 4

Description Turning repetitive commands into simple scripts.

Key Knowledge Areas:

■ Basic shell scripting
■ Awareness of common text editors (vi and nano)

The following is a partial list of the used files, terms and utilities:

■ #! (shebang)
■ /bin/bash
■ Variables
■ Arguments

■ for loops
■ echo
■ Exit status

Topic 4: The Linux Operating System

4.1 Choosing an Operating System (weight: 1)

Weight 1

Description Knowledge of major operating systems and Linux distributions.

Key Knowledge Areas:

■ Differences between Windows, OS X and Linux
■ Distribution life cycle management

The following is a partial list of the used files, terms and utilities:

■ GUI versus command line, desktop configuration
■ Maintenance cycles, beta and stable

4.2 Understanding Containers (weight: 2)

Weight 2

Description Familiarity with the components that go into building a container with app inside.

Key Knowledge Areas:

■ Docker

The following is a partial list of the used files, terms and utilities:

■ Dockerfile, start, stop, images, containers
■ Arguments, build, debug
■ Docker Compose

4.3 Where Data is Stored (weight: 3)

Weight 3

Description Where various types of information are stored inside container.

Key Knowledge Areas:

■ Programs and configuration
■ Processes
■ Resource management
■ Volume management
■ Logging

The following is a partial list of the used files, terms and utilities:

■ ps, top, free

■ mount, bind
■ /etc/, /var/log/
■ /boot/, /proc/, /dev/, /sys/

4.4 Your Containers on the Network (weight: 2)

Weight 2

Description Querying virtual networking configuration and determining the basic requirements for a

Container on a the Network.

Key Knowledge Areas:

■ Internet, network, routers
■ Bridges, Hosts
■ Querying network configuration

The following is a partial list of the used files, terms and utilities:

■ route, ip route show
■ ifconfig, ip addr show
■ netstat, ss
■ /etc/resolv.conf, /etc/hosts
■ IPv4, IPv6
■ ping
■ host

Topic 5: Security and File Permissions

5.1 Basic Security and Identifying User Types (weight: 2)

Weight 2

Description Various types of users on a Linux system.

Key Knowledge Areas:

■ Root and standard users
■ System users

The following is a partial list of the used files, terms and utilities:

■ /etc/passwd, /etc/shadow, /etc/group
■ id, last, who, w
■ sudo, su

5.2 Creating Users and Groups (weight: 2)

Weight 2

Description Creating users and groups on a Linux system.

Key Knowledge Areas:

■ User and group commands
■ User IDs

The following is a partial list of the used files, terms and utilities:

■ /etc/passwd, /etc/shadow, /etc/group, /etc/skel/
■ useradd, groupadd
■ passwd

5.3 Managing File Permissions and Ownership (weight: 2)

Weight 2

Description Understanding and manipulating file permissions and ownership settings.

Key Knowledge Areas:

■ File and directory permissions and ownership

The following is a partial list of the used files, terms and utilities:

■ ls -l, ls -a
■ chmod, chown

5.4 Special Directories and Files (weight: 1)

Weight 1

Description Special directories and files on a Linux system including special permissions.

Key Knowledge Areas:

■ Using temporary files and directories
■ Symbolic links

The following is a partial list of the used files, terms and utilities:

■ /tmp/, /var/tmp/ and Sticky Bit
■ ls -d
■ ln -s

The Art of Command Line

A sort lecture

● Meta

● Basics

● Everyday use

● Processing files and data

● System debugging

● One-liners

● Obscure but useful

● macOS only

● Windows only

● More resources

● Disclaimer

Fluency on the command line is a skill often neglected or considered arcane, but it improves

your flexibility and productivity as an engineer in both obvious and subtle ways. This is a

selection of notes and tips on using the command-line that we've found useful when working

on Linux. Some tips are elementary, and some are fairly specific, sophisticated, or obscure.

This page is not long, but if you can use and recall all the items here, you know a lot.

This work is the result of many authors and translators. Some of this originally appeared on

Quora, but it has since moved to GitHub, where people more talented than the original author

have made numerous improvements. Please submit a question if you have a question related

to the command line. Please contribute if you see an error or something that could be better!

Meta

https://github.com/jlevy/the-art-of-command-line?s=03#meta
https://github.com/jlevy/the-art-of-command-line?s=03#basics
https://github.com/jlevy/the-art-of-command-line?s=03#everyday-use
https://github.com/jlevy/the-art-of-command-line?s=03#processing-files-and-data
https://github.com/jlevy/the-art-of-command-line?s=03#system-debugging
https://github.com/jlevy/the-art-of-command-line?s=03#one-liners
https://github.com/jlevy/the-art-of-command-line?s=03#obscure-but-useful
https://github.com/jlevy/the-art-of-command-line?s=03#macos-only
https://github.com/jlevy/the-art-of-command-line?s=03#windows-only
https://github.com/jlevy/the-art-of-command-line?s=03#more-resources
https://github.com/jlevy/the-art-of-command-line?s=03#disclaimer
https://github.com/jlevy/the-art-of-command-line/blob/master/AUTHORS.md
http://www.quora.com/What-are-some-lesser-known-but-useful-Unix-commands
http://www.quora.com/What-are-the-most-useful-Swiss-army-knife-one-liners-on-Unix
http://www.quora.com/What-are-some-time-saving-tips-that-every-Linux-user-should-know
https://airtable.com/shrzMhx00YiIVAWJg
https://github.com/jlevy/the-art-of-command-line/blob/master/CONTRIBUTING.md

Scope:

● This guide is for both beginners and experienced users. The goals are breadth

(everything important), specificity (give concrete examples of the most common case),

and brevity (avoid things that aren't essential or digressions you can easily look up

elsewhere). Every tip is essential in some situation or significantly saves time over

alternatives.

● This is written for Linux, with the exception of the "macOS only" and "Windows only"

sections. Many of the other items apply or can be installed on other Unices or macOS

(or even Cygwin).

● The focus is on interactive Bash, though many tips apply to other shells and to general

Bash scripting.

● It includes both "standard" Unix commands as well as ones that require special package

installs -- so long as they are important enough to merit inclusion.

Notes:

● To keep this to one page, content is implicitly included by reference. You're smart

enough to look up more detail elsewhere once you know the idea or command to

Google. Use apt, yum, dnf, pacman, pip or brew (as appropriate) to install new programs.

● Use Explainshell to get a helpful breakdown of what commands, options, pipes etc. do.

Basics

● Learn basic Bash. Actually, type man bash and at least skim the whole thing; it's pretty

easy to follow and not that long. Alternate shells can be nice, but Bash is powerful and

always available (learning only zsh, fish, etc., while tempting on your own laptop,

restricts you in many situations, such as using existing servers).

● Learn at least one text-based editor well. The nano editor is one of the simplest for basic

editing (opening, editing, saving, searching). However, for the power user in a text

terminal, there is no substitute for Vim (vi), the hard-to-learn but venerable, fast, and

full-featured editor. Many people also use the classic Emacs, particularly for larger

editing tasks. (Of course, any modern software developer working on an extensive

project is unlikely to use only a pure text-based editor and should also be familiar with

modern graphical IDEs and tools.)

● Finding documentation:

○ Know how to read official documentation with man (for the inquisitive, man man lists

the section numbers, e.g. 1 is "regular" commands, 5 is files/conventions, and 8

are for administration). Find man pages with apropos.

○ Know that some commands are not executables, but Bash builtins, and that you

can get help on them with help and help -d. You can find out whether a

command is an executable, shell builtin or an alias by using type command.

○ curl cheat.sh/command will give a brief "cheat sheet" with common examples of

how to use a shell command.

● Learn about redirection of output and input using > and < and pipes using |. Know >

overwrites the output file and >> appends. Learn about stdout and stderr.

https://github.com/jlevy/the-art-of-command-line?s=03#macos-only
https://github.com/jlevy/the-art-of-command-line?s=03#windows-only
http://explainshell.com/

● Learn about file glob expansion with * (and perhaps ? and [...]) and quoting and the

difference between double " and single ' quotes. (See more on variable expansion

below.)

● Be familiar with Bash job management: &, ctrl-z, ctrl-c, jobs, fg, bg, kill, etc.

● Know ssh, and the basics of passwordless authentication, via ssh-agent, ssh-add, etc.

● Basic file management: ls and ls -l (in particular, learn what every column in ls -l

means), less, head, tail and tail -f (or even better, less +F), ln and ln -s (learn the

differences and advantages of hard versus soft links), chown, chmod, du (for a quick

summary of disk usage: du -hs *). For filesystem management, df, mount, fdisk, mkfs,

lsblk. Learn what an inode is (ls -i or df -i).

● Basic network management: ip or ifconfig, dig, traceroute, route.

● Learn and use a version control management system, such as git.

● Know regular expressions well, and the various flags to grep/egrep. The -i, -o, -v, -A, -

B, and -C options are worth knowing.

● Learn to use apt-get, yum, dnf or pacman (depending on distro) to find and install

packages. And make sure you have pip to install Python-based command-line tools (a

few below are easiest to install via pip).

Everyday use

● In Bash, use Tab to complete arguments or list all available commands and ctrl-r to

search through command history (after pressing, type to search, press ctrl-r repeatedly

to cycle through more matches, press Enter to execute the found command, or hit the

right arrow to put the result in the current line to allow editing).

● In Bash, use ctrl-w to delete the last word, and ctrl-u to delete the content from current

cursor back to the start of the line. Use alt-b and alt-f to move by word, ctrl-a to move

cursor to beginning of line, ctrl-e to move cursor to end of line, ctrl-k to kill to the end of

the line, ctrl-l to clear the screen. See man readline for all the default keybindings in

Bash. There are a lot. For example alt-. cycles through previous arguments, and alt-*

expands a glob.

● Alternatively, if you love vi-style key-bindings, use set -o vi (and set -o emacs to put it

back).

● For editing long commands, after setting your editor (for example export EDITOR=vim),

ctrl-x ctrl-e will open the current command in an editor for multi-line editing. Or in vi

style, escape-v.

● To see recent commands, use history. Follow with !n (where n is the command

number) to execute again. There are also many abbreviations you can use, the most

useful probably being !$ for last argument and !! for last command (see "HISTORY

EXPANSION" in the man page). However, these are often easily replaced with ctrl-r and

alt-..

● Go to your home directory with cd. Access files relative to your home directory with the ~

prefix (e.g. ~/.bashrc). In sh scripts refer to the home directory as $HOME.

● To go back to the previous working directory: cd -.

● If you are halfway through typing a command but change your mind, hit alt-# to add a #

at the beginning and enter it as a comment (or use ctrl-a, #, enter). You can then return

to it later via command history.

● Use xargs (or parallel). It's very powerful. Note you can control how many items

execute per line (-L) as well as parallelism (-P). If you're not sure if it'll do the right thing,

use xargs echo first. Also, -I{} is handy. Examples:

 find . -name '*.py' | xargs grep some_function

 cat hosts | xargs -I{} ssh root@{} hostname

● pstree -p is a helpful display of the process tree.

● Use pgrep and pkill to find or signal processes by name (-f is helpful).

● Know the various signals you can send processes. For example, to suspend a process,

use kill -STOP [pid]. For the full list, see man 7 signal

● Use nohup or disown if you want a background process to keep running forever.

● Check what processes are listening via netstat -lntp or ss -plat (for TCP; add -u for

UDP) or lsof -iTCP -sTCP:LISTEN -P -n (which also works on macOS).

● See also lsof and fuser for open sockets and files.

● See uptime or w to know how long the system has been running.

● Use alias to create shortcuts for commonly used commands. For example, alias

ll='ls -latr' creates a new alias ll.

● Save aliases, shell settings, and functions you commonly use in ~/.bashrc, and arrange

for login shells to source it. This will make your setup available in all your shell sessions.

● Put the settings of environment variables as well as commands that should be executed

when you login in ~/.bash_profile. Separate configuration will be needed for shells you

launch from graphical environment logins and cron jobs.

● Synchronize your configuration files (e.g. .bashrc and .bash_profile) among various

computers with Git.

● Understand that care is needed when variables and filenames include whitespace.

Surround your Bash variables with quotes, e.g. "$FOO". Prefer the -0 or -print0 options

to enable null characters to delimit filenames, e.g. locate -0 pattern | xargs -0 ls -

al or find / -print0 -type d | xargs -0 ls -al. To iterate on filenames containing

whitespace in a for loop, set your IFS to be a newline only using IFS=$'\n'.

● In Bash scripts, use set -x (or the variant set -v, which logs raw input, including

unexpanded variables and comments) for debugging output. Use strict modes unless

you have a good reason not to: Use set -e to abort on errors (nonzero exit code). Use

set -u to detect unset variable usages. Consider set -o pipefail too, to abort on

errors within pipes (though read up on it more if you do, as this topic is a bit subtle). For

more involved scripts, also use trap on EXIT or ERR. A useful habit is to start a script

like this, which will make it detect and abort on common errors and print a message:

 set -euo pipefail

 trap "echo 'error: Script failed: see failed command above'" ERR

● In Bash scripts, subshells (written with parentheses) are convenient ways to group

commands. A common example is to temporarily move to a different working directory,

e.g.

 # do something in current dir

 (cd /some/other/dir && other-command)

 # continue in original dir

http://superuser.com/a/183980/7106
http://superuser.com/a/183980/7106

● In Bash, note there are lots of kinds of variable expansion. Checking a variable exists:

${name:?error message}. For example, if a Bash script requires a single argument, just

write input_file=${1:?usage: $0 input_file}. Using a default value if a variable is

empty: ${name:-default}. If you want to have an additional (optional) parameter added

to the previous example, you can use something like output_file=${2:-logfile}. If $2

is omitted and thus empty, output_file will be set to logfile. Arithmetic expansion:

i=$(((i + 1) % 5)). Sequences: {1..10}. Trimming of strings: ${var%suffix} and

${var#prefix}. For example if var=foo.pdf, then echo ${var%.pdf}.txt prints foo.txt.

● Brace expansion using {...} can reduce having to re-type similar text and automate

combinations of items. This is helpful in examples like mv foo.{txt,pdf} some-dir

(which moves both files), cp somefile{,.bak} (which expands to cp somefile

somefile.bak) or mkdir -p test-{a,b,c}/subtest-{1,2,3} (which expands all possible

combinations and creates a directory tree). Brace expansion is performed before any

other expansion.

● The order of expansions is: brace expansion; tilde expansion, parameter and variable

expansion, arithmetic expansion, and command substitution (done in a left-to-right

fashion); word splitting; and filename expansion. (For example, a range like {1..20}

cannot be expressed with variables using {$a..$b}. Use seq or a for loop instead, e.g.,

seq $a $b or for((i=a; i<=b; i++)); do ... ; done.)

● The output of a command can be treated like a file via <(some command) (known as

process substitution). For example, compare local /etc/hosts with a remote one:

 diff /etc/hosts <(ssh somehost cat /etc/hosts)

● When writing scripts you may want to put all of your code in curly braces. If the closing

brace is missing, your script will be prevented from executing due to a syntax error. This

makes sense when your script is going to be downloaded from the web, since it

prevents partially downloaded scripts from executing:

{

 # Your code here

}

● A "here document" allows redirection of multiple lines of input as if from a file:

cat <<EOF

input

on multiple lines

EOF

● In Bash, redirect both standard output and standard error via: some-command >logfile

2>&1 or some-command &>logfile. Often, to ensure a command does not leave an open

file handle to standard input, tying it to the terminal you are in, it is also good practice to

add </dev/null.

● Use man ascii for a good ASCII table, with hex and decimal values. For general

encoding info, man unicode, man utf-8, and man latin1 are helpful.

● Use screen or tmux to multiplex the screen, especially useful on remote ssh sessions

and to detach and re-attach to a session. byobu can enhance screen or tmux by

https://www.tldp.org/LDP/abs/html/here-docs.html
https://tmux.github.io/

providing more information and easier management. A more minimal alternative for

session persistence only is dtach.

● In ssh, knowing how to port tunnel with -L or -D (and occasionally -R) is useful, e.g. to

access web sites from a remote server.

● It can be useful to make a few optimizations to your ssh configuration; for example, this

~/.ssh/config contains settings to avoid dropped connections in certain network

environments, uses compression (which is helpful with scp over low-bandwidth

connections), and multiplex channels to the same server with a local control file:

 TCPKeepAlive=yes

 ServerAliveInterval=15

 ServerAliveCountMax=6

 Compression=yes

 ControlMaster auto

 ControlPath /tmp/%r@%h:%p

 ControlPersist yes

● A few other options relevant to ssh are security sensitive and should be enabled with

care, e.g. per subnet or host or in trusted networks: StrictHostKeyChecking=no,
ForwardAgent=yes

● Consider mosh an alternative to ssh that uses UDP, avoiding dropped connections and

adding convenience on the road (requires server-side setup).

● To get the permissions on a file in octal form, which is useful for system configuration

but not available in ls and easy to bungle, use something like

 stat -c '%A %a %n' /etc/timezone

● For interactive selection of values from the output of another command, use percol or

fzf.

● For interaction with files based on the output of another command (like git), use fpp

(PathPicker).

● For a simple web server for all files in the current directory (and subdirs), available to

anyone on your network, use: python -m SimpleHTTPServer 7777 (for port 7777 and

Python 2) and python -m http.server 7777 (for port 7777 and Python 3).

● For running a command as another user, use sudo. Defaults to running as root; use -u

to specify another user. Use -i to login as that user (you will be asked for your

password).

● For switching the shell to another user, use su username or su - username. The latter

with "-" gets an environment as if another user just logged in. Omitting the username

defaults to root. You will be asked for the password of the user you are switching to.

● Know about the 128K limit on command lines. This "Argument list too long" error is

common when wildcard matching large numbers of files. (When this happens

alternatives like find and xargs may help.)

● For a basic calculator (and of course access to Python in general), use the python

interpreter. For example,

>>> 2+3

5

https://github.com/bogner/dtach
https://mosh.mit.edu/
https://github.com/mooz/percol
https://github.com/junegunn/fzf
https://github.com/facebook/PathPicker
https://wiki.debian.org/CommonErrorMessages/ArgumentListTooLong

Processing files and data

● To locate a file by name in the current directory, find . -iname '*something*' (or

similar). To find a file anywhere by name, use locate something (but bear in mind

updatedb may not have indexed recently created files).

● For general searching through source or data files, there are several options more

advanced or faster than grep -r, including (in rough order from older to newer) ack, ag

("the silver searcher"), and rg (ripgrep).

● To convert HTML to text: lynx -dump -stdin

● For Markdown, HTML, and all kinds of document conversion, try pandoc. For example,

to convert a Markdown document to Word format: pandoc README.md --from markdown
--to docx -o temp.docx

● If you must handle XML, xmlstarlet is old but good.

● For JSON, use jq. For interactive use, also see jid and jiq.

● For YAML, use shyaml.

● For Excel or CSV files, csvkit provides in2csv, csvcut, csvjoin, csvgrep, etc.

● For Amazon S3, s3cmd is convenient and s4cmd is faster. Amazon's aws and the

improved saws are essential for other AWS-related tasks.

● Know about sort and uniq, including uniq's -u and -d options -- see one-liners below.

See also comm.

● Know about cut, paste, and join to manipulate text files. Many people use cut but

forget about join.

● Know about wc to count newlines (-l), characters (-m), words (-w) and bytes (-c).

● Know about tee to copy from stdin to a file and also to stdout, as in ls -al | tee

file.txt.

● For more complex calculations, including grouping, reversing fields, and statistical

calculations, consider datamash.

● Know that locale affects a lot of command line tools in subtle ways, including sorting

order (collation) and performance. Most Linux installations will set LANG or other locale

variables to a local setting like US English. But be aware sorting will change if you

change locale. And know i18n routines can make sort or other commands run many

times slower. In some situations (such as the set operations or uniqueness operations

below) you can safely ignore slow i18n routines entirely and use traditional byte-based

sort order, using export LC_ALL=C.

● You can set a specific command's environment by prefixing its invocation with the

environment variable settings, as in TZ=Pacific/Fiji date.

● Know basic awk and sed for simple data munging. See One-liners for examples.

● To replace all occurrences of a string in place, in one or more files:

 perl -pi.bak -e 's/old-string/new-string/g' my-files-*.txt

● To rename multiple files and/or search and replace within files, try repren. (In some

cases the rename command also allows multiple renames, but be careful as its

functionality is not the same on all Linux distributions.)

 # Full rename of filenames, directories, and contents foo -> bar:

 repren --full --preserve-case --from foo --to bar .

 # Recover backup files whatever.bak -> whatever:

https://github.com/beyondgrep/ack2
https://github.com/ggreer/the_silver_searcher
https://github.com/BurntSushi/ripgrep
http://pandoc.org/
http://stedolan.github.io/jq/
https://github.com/simeji/jid
https://github.com/fiatjaf/jiq
https://github.com/0k/shyaml
https://github.com/onyxfish/csvkit
https://github.com/s3tools/s3cmd
https://github.com/bloomreach/s4cmd
https://github.com/aws/aws-cli
https://github.com/donnemartin/saws
https://www.gnu.org/software/datamash/
https://github.com/jlevy/the-art-of-command-line?s=03#one-liners
https://github.com/jlevy/repren

 repren --renames --from '(.*)\.bak' --to '\1' *.bak

 # Same as above, using rename, if available:

 rename 's/\.bak$//' *.bak

● As the man page says, rsync really is a fast and extraordinarily versatile file copying

tool. It's known for synchronizing between machines but is equally useful locally. When

security restrictions allow, using rsync instead of scp allows recovery of a transfer

without restarting from scratch. It also is among the fastest ways to delete large

numbers of files:

mkdir empty && rsync -r --delete empty/ some-dir && rmdir some-dir

● For monitoring progress when processing files, use pv, pycp, pmonitor, progress, rsync

--progress, or, for block-level copying, dd status=progress.

● Use shuf to shuffle or select random lines from a file.

● Know sort's options. For numbers, use -n, or -h for handling human-readable numbers

(e.g. from du -h). Know how keys work (-t and -k). In particular, watch out that you

need to write -k1,1 to sort by only the first field; -k1 means sort according to the whole

line. Stable sort (sort -s) can be useful. For example, to sort first by field 2, then

secondarily by field 1, you can use sort -k1,1 | sort -s -k2,2.

● If you ever need to write a tab literal in a command line in Bash (e.g. for the -t argument

to sort), press ctrl-v [Tab] or write $'\t' (the latter is better as you can copy/paste it).

● The standard tools for patching source code are diff and patch. See also diffstat for

summary statistics of a diff and sdiff for a side-by-side diff. Note diff -r works for

entire directories. Use diff -r tree1 tree2 | diffstat for a summary of changes.

Use vimdiff to compare and edit files.

● For binary files, use hd, hexdump or xxd for simple hex dumps and bvi, hexedit or biew

for binary editing.

● Also for binary files, strings (plus grep, etc.) lets you find bits of text.

● For binary diffs (delta compression), use xdelta3.

● To convert text encodings, try iconv. Or uconv for more advanced use; it supports some

advanced Unicode things. For example:

 # Displays hex codes or actual names of characters (useful for debugging):

 uconv -f utf-8 -t utf-8 -x '::Any-Hex;' < input.txt

 uconv -f utf-8 -t utf-8 -x '::Any-Name;' < input.txt

 # Lowercase and removes all accents (by expanding and dropping them):

 uconv -f utf-8 -t utf-8 -x '::Any-Lower; ::Any-NFD; [:Nonspacing Mark:] >;

::Any-NFC;' < input.txt > output.txt

● To split files into pieces, see split (to split by size) and csplit (to split by a pattern).

● Date and time: To get the current date and time in the helpful ISO 8601 format, use date

-u +"%Y-%m-%dT%H:%M:%SZ" (other options are problematic). To manipulate date and

time expressions, use dateadd, datediff, strptime etc. from dateutils.

● Use zless, zmore, zcat, and zgrep to operate on compressed files.

● File attributes are settable via chattr and offer a lower-level alternative to file

permissions. For example, to protect against accidental file deletion the immutable flag:
sudo chattr +i /critical/directory/or/file

● Use getfacl and setfacl to save and restore file permissions. For example:

https://web.archive.org/web/20130929001850/http:/linuxnote.net/jianingy/en/linux/a-fast-way-to-remove-huge-number-of-files.html
http://www.ivarch.com/programs/pv.shtml
https://github.com/dmerejkowsky/pycp
https://github.com/dspinellis/pmonitor
https://github.com/Xfennec/progress
https://en.wikipedia.org/wiki/ISO_8601
https://stackoverflow.com/questions/7216358/date-command-on-os-x-doesnt-have-iso-8601-i-option
https://unix.stackexchange.com/questions/164826/date-command-iso-8601-option
http://www.fresse.org/dateutils/

 getfacl -R /some/path > permissions.txt

 setfacl --restore=permissions.txt

● To create empty files quickly, use truncate (creates sparse file), fallocate (ext4, xfs,

btrfs and ocfs2 filesystems), xfs_mkfile (almost any filesystems, comes in xfsprogs

package), mkfile (for Unix-like systems like Solaris, Mac OS).

System debugging

● For web debugging, curl and curl -I are handy, or their wget equivalents, or the more

modern httpie.

● To know current cpu/disk status, the classic tools are top (or the better htop), iostat,

and iotop. Use iostat -mxz 15 for basic CPU and detailed per-partition disk stats and

performance insight.

● For network connection details, use netstat and ss.

● For a quick overview of what's happening on a system, dstat is especially useful. For

broadest overview with details, use glances.

● To know memory status, run and understand the output of free and vmstat. In

particular, be aware the "cached" value is memory held by the Linux kernel as file

cache, so effectively counts toward the "free" value.

● Java system debugging is a different kettle of fish, but a simple trick on Oracle's and

some other JVMs is that you can run kill -3 <pid> and a full stack trace and heap

summary (including generational garbage collection details, which can be highly

informative) will be dumped to stderr/logs. The JDK's jps, jstat, jstack, jmap are

useful. SJK tools are more advanced.

● Use mtr as a better traceroute, to identify network issues.

● For looking at why a disk is full, ncdu saves time over the usual commands like du -sh

*.

● To find which socket or process is using bandwidth, try iftop or nethogs.

● The ab tool (comes with Apache) is helpful for quick-and-dirty checking of web server

performance. For more complex load testing, try siege.

● For more serious network debugging, wireshark, tshark, or ngrep.

● Know about strace and ltrace. These can be helpful if a program is failing, hanging, or

crashing, and you don't know why, or if you want to get a general idea of performance.

Note the profiling option (-c), and the ability to attach to a running process (-p). Use

trace child option (-f) to avoid missing important calls.

● Know about ldd to check shared libraries etc — but never run it on untrusted files.

● Know how to connect to a running process with gdb and get its stack traces.

● Use /proc. It's amazingly helpful sometimes when debugging live problems. Examples:

/proc/cpuinfo, /proc/meminfo, /proc/cmdline, /proc/xxx/cwd, /proc/xxx/exe,

/proc/xxx/fd/, /proc/xxx/smaps (where xxx is the process id or pid).

● When debugging why something went wrong in the past, sar can be very helpful. It

shows historic statistics on CPU, memory, network, etc.

● For deeper systems and performance analyses, look at stap (SystemTap), perf, and

sysdig.

● Check what OS you're on with uname or uname -a (general Unix/kernel info) or

lsb_release -a (Linux distro info).

https://en.wikipedia.org/wiki/Sparse_file
https://github.com/jkbrzt/httpie
https://github.com/nicolargo/glances
https://github.com/aragozin/jvm-tools
http://www.bitwizard.nl/mtr/
https://dev.yorhel.nl/ncdu
http://www.ex-parrot.com/~pdw/iftop/
https://github.com/raboof/nethogs
https://wireshark.org/
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
http://ngrep.sourceforge.net/
http://www.catonmat.net/blog/ldd-arbitrary-code-execution/
http://sebastien.godard.pagesperso-orange.fr/
https://sourceware.org/systemtap/wiki
https://en.wikipedia.org/wiki/Perf_%28Linux%29
https://github.com/draios/sysdig

● Use dmesg whenever something's acting really funny (it could be hardware or driver

issues).

● If you delete a file and it doesn't free up expected disk space as reported by du, check

whether the file is in use by a process: lsof | grep deleted | grep "filename-of-my-
big-file"

One-liners

A few examples of piecing together commands:

● It is remarkably helpful sometimes that you can do set intersection, union, and

difference of text files via sort/uniq. Suppose a and b are text files that are already

uniqued. This is fast, and works on files of arbitrary size, up to many gigabytes. (Sort is

not limited by memory, though you may need to use the -T option if /tmp is on a small

root partition.) See also the note about LC_ALL above and sort's -u option (left out for

clarity below).

 sort a b | uniq > c # c is a union b

 sort a b | uniq -d > c # c is a intersect b

 sort a b b | uniq -u > c # c is set difference a - b

● Pretty-print two JSON files, normalizing their syntax, then coloring and paginating the

result:

 diff <(jq --sort-keys . < file1.json) <(jq --sort-keys . < file2.json) |

colordiff | less -R

● Use grep . * to quickly examine the contents of all files in a directory (so each line is

paired with the filename), or head -100 * (so each file has a heading). This can be

useful for directories filled with config settings like those in /sys, /proc, /etc.

● Summing all numbers in the third column of a text file (this is probably 3X faster and 3X

less code than equivalent Python):

 awk '{ x += $3 } END { print x }' myfile

● To see sizes/dates on a tree of files, this is like a recursive ls -l but is easier to read

than ls -lR:

 find . -type f -ls

● Say you have a text file, like a web server log, and a certain value that appears on some

lines, such as an acct_id parameter that is present in the URL. If you want a tally of

how many requests for each acct_id:

 egrep -o 'acct_id=[0-9]+' access.log | cut -d= -f2 | sort | uniq -c | sort -rn

● To continuously monitor changes, use watch, e.g. check changes to files in a directory

with watch -d -n 2 'ls -rtlh | tail' or to network settings while troubleshooting

your wifi settings with watch -d -n 2 ifconfig.

● Run this function to get a random tip from this document (parses Markdown and

extracts an item):

 function taocl() {

 curl -s https://raw.githubusercontent.com/jlevy/the-art-of-command-

line/master/README.md |

 sed '/cowsay[.]png/d' |

 pandoc -f markdown -t html |

 xmlstarlet fo --html --dropdtd |

 xmlstarlet sel -t -v "(html/body/ul/li[count(p)>0])[$RANDOM mod last()+1]"

|

 xmlstarlet unesc | fmt -80 | iconv -t US

 }

Obscure but useful

● expr: perform arithmetic or boolean operations or evaluate regular expressions

● m4: simple macro processor

● yes: print a string a lot

● cal: nice calendar

● env: run a command (useful in scripts)

● printenv: print out environment variables (useful in debugging and scripts)

● look: find English words (or lines in a file) beginning with a string

● cut, paste and join: data manipulation

● fmt: format text paragraphs

● pr: format text into pages/columns

● fold: wrap lines of text

● column: format text fields into aligned, fixed-width columns or tables

● expand and unexpand: convert between tabs and spaces

● nl: add line numbers

● seq: print numbers

● bc: calculator

● factor: factor integers

● gpg: encrypt and sign files

● toe: table of terminfo entries

● nc: network debugging and data transfer

● socat: socket relay and tcp port forwarder (similar to netcat)

● slurm: network traffic visualization

● dd: moving data between files or devices

● file: identify type of a file

● tree: display directories and subdirectories as a nesting tree; like ls but recursive

● stat: file info

● time: execute and time a command

● timeout: execute a command for specified amount of time and stop the process when

the specified amount of time completes.

● lockfile: create semaphore file that can only be removed by rm -f

● logrotate: rotate, compress and mail logs.

● watch: run a command repeatedly, showing results and/or highlighting changes

https://gnupg.org/
https://github.com/mattthias/slurm

● when-changed: runs any command you specify whenever it sees file changed. See

inotifywait and entr as well.

● tac: print files in reverse

● comm: compare sorted files line by line

● strings: extract text from binary files

● tr: character translation or manipulation

● iconv or uconv: conversion for text encodings

● split and csplit: splitting files

● sponge: read all input before writing it, useful for reading from then writing to the same

file, e.g., grep -v something some-file | sponge some-file

● units: unit conversions and calculations; converts furlongs per fortnight to twips per

blink (see also /usr/share/units/definitions.units)

● apg: generates random passwords

● xz: high-ratio file compression

● ldd: dynamic library info

● nm: symbols from object files

● ab or wrk: benchmarking web servers

● strace: system call debugging

● mtr: better traceroute for network debugging

● cssh: visual concurrent shell

● rsync: sync files and folders over SSH or in local file system

● wireshark and tshark: packet capture and network debugging

● ngrep: grep for the network layer

● host and dig: DNS lookups

● lsof: process file descriptor and socket info

● dstat: useful system stats

● glances: high level, multi-subsystem overview

● iostat: Disk usage stats

● mpstat: CPU usage stats

● vmstat: Memory usage stats

● htop: improved version of top

● last: login history

● w: who's logged on

● id: user/group identity info

● sar: historic system stats

● iftop or nethogs: network utilization by socket or process

● ss: socket statistics

● dmesg: boot and system error messages

● sysctl: view and configure Linux kernel parameters at run time

● hdparm: SATA/ATA disk manipulation/performance

● lsblk: list block devices: a tree view of your disks and disk partitions

● lshw, lscpu, lspci, lsusb, dmidecode: hardware information, including CPU, BIOS,

RAID, graphics, devices, etc.

● lsmod and modinfo: List and show details of kernel modules.

● fortune, ddate, and sl: um, well, it depends on whether you consider steam

locomotives and Zippy quotations "useful"

https://github.com/joh/when-changed
https://github.com/wg/wrk
http://www.bitwizard.nl/mtr/
https://wireshark.org/
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
http://ngrep.sourceforge.net/
https://github.com/nicolargo/glances
http://sebastien.godard.pagesperso-orange.fr/
http://www.ex-parrot.com/~pdw/iftop/
https://github.com/raboof/nethogs

macOS only

These are items relevant only on macOS.

● Package management with brew (Homebrew) and/or port (MacPorts). These can be

used to install on macOS many of the above commands.

● Copy output of any command to a desktop app with pbcopy and paste input from one

with pbpaste.

● To enable the Option key in macOS Terminal as an alt key (such as used in the

commands above like alt-b, alt-f, etc.), open Preferences -> Profiles -> Keyboard and

select "Use Option as Meta key".

● To open a file with a desktop app, use open or open -a /Applications/Whatever.app.

● Spotlight: Search files with mdfind and list metadata (such as photo EXIF info) with

mdls.

● Be aware macOS is based on BSD Unix, and many commands (for example ps, ls,

tail, awk, sed) have many subtle variations from Linux, which is largely influenced by

System V-style Unix and GNU tools. You can often tell the difference by noting a man

page has the heading "BSD General Commands Manual." In some cases GNU versions

can be installed, too (such as gawk and gsed for GNU awk and sed). If writing cross-

platform Bash scripts, avoid such commands (for example, consider Python or perl) or

test carefully.

● To get macOS release information, use sw_vers.

Windows only

These items are relevant only on Windows.

Ways to obtain Unix tools under Windows

● Access the power of the Unix shell under Microsoft Windows by installing Cygwin. Most

of the things described in this document will work out of the box.

● On Windows 10, you can use Windows Subsystem for Linux (WSL), which provides a

familiar Bash environment with Unix command line utilities.

● If you mainly want to use GNU developer tools (such as GCC) on Windows, consider

MinGW and its MSYS package, which provides utilities such as bash, gawk, make and

grep. MSYS doesn't have all the features compared to Cygwin. MinGW is particularly

useful for creating native Windows ports of Unix tools.

● Another option to get Unix look and feel under Windows is Cash. Note that only very few

Unix commands and command-line options are available in this environment.

Useful Windows command-line tools

● You can perform and script most Windows system administration tasks from the

command line by learning and using wmic.

● Native command-line Windows networking tools you may find useful include ping,

ipconfig, tracert, and netstat.

● You can perform many useful Windows tasks by invoking the Rundll32 command.

https://cygwin.com/
https://msdn.microsoft.com/commandline/wsl/about
http://www.mingw.org/
http://www.mingw.org/wiki/msys
https://github.com/dthree/cash
http://www.thewindowsclub.com/rundll32-shortcut-commands-windows

Cygwin tips and tricks

● Install additional Unix programs with the Cygwin's package manager.

● Use mintty as your command-line window.

● Access the Windows clipboard through /dev/clipboard.

● Run cygstart to open an arbitrary file through its registered application.

● Access the Windows registry with regtool.

● Note that a C:\ Windows drive path becomes /cygdrive/c under Cygwin, and that

Cygwin's / appears under C:\cygwin on Windows. Convert between Cygwin and

Windows-style file paths with cygpath. This is most useful in scripts that invoke

Windows programs.

More resources

● awesome-shell: A curated list of shell tools and resources.

● awesome-osx-command-line: A more in-depth guide for the macOS command line.

● Strict mode for writing better shell scripts.

● shellcheck: A shell script static analysis tool. Essentially, lint for bash/sh/zsh.

● Filenames and Pathnames in Shell: The sadly complex minutiae on how to handle

filenames correctly in shell scripts.

● Data Science at the Command Line: More commands and tools helpful for doing data

science, from the book of the same name

Disclaimer

With the exception of very small tasks, code is written so others can read it. With power comes

responsibility. The fact you can do something in Bash doesn't necessarily mean you should! ;)

https://github.com/alebcay/awesome-shell
https://github.com/herrbischoff/awesome-osx-command-line
http://redsymbol.net/articles/unofficial-bash-strict-mode/
https://github.com/koalaman/shellcheck
http://www.dwheeler.com/essays/filenames-in-shell.html
http://datascienceatthecommandline.com/#tools

