
Optimization
Algorithms

Authored by: Lovekush Chaurasia, Amol Borse,
Associate Software Engineer, Noida Lead
Reviewed by: Dr. Param Jeet, Amit Sood,
Senior Data Scientist, Noida

for Machine Learning Models

Optimization Algorithms 2

Contents

Brief
Introduction
Dataset
Data Cleaning
Convert Categorical Features to Numerical
Split between Test & Training Dataset
Training the Model
Checking the Model Accuracy
Considering Alternative Models for Classification
Feature Selection Using Model Importance
Optimizing Performance of Model Using
Optimization algorithms
 .K-fold Cross Validation
 .Batch Normalization
 .Grid Search
 .Stochastic Gradient Descent
 .RMSprop
Performance of Models After Using
Optimization Algorithms
Conclusion
Appendix A
 .Source Code & Datasets
Appendix B
 .References

3
3
4
5
5
5
6
6
7
8
9

9
11
13
15
17
19

19
20
20
20
20

Optimization Algorithms 3

Brief
This white paper explores the optimization algorithms for machine learning models.
In this use case scenario, we explore how an optimized machine learning model
can be used to predict employee attrition.

Introduction
Optimization is the most crucial part of machine learning algorithms. It begins with
defining loss function/cost function and ends with minimizing loss and cost using
optimization algorithms These help us maximize or minimize an error function. The
internal parameters of a model play a very important role in efficiently and effectively
training a model and producing accurate results. This is why we use various
optimization algorithms to update and calculate appropriate and optimum values of
a model’s parameters. This, in turn, improves our model’s learning process, as well
as its output.

In this use case scenario, we’ll look at machine learning in terms of employee
attrition prediction. Employers generally consider attrition a loss of valuable
employees and talent; however, there is more to attrition than a shrinking
workforce. When employees leave an organization, they take with them much-
needed skills and qualifications they developed during their tenure. There is no way
for employers to know which employees will leave the company, but a well-trained
machine learning model can be used to predict attrition. We will look at some of
the optimization algorithms to improve the performance of the model.

Optimization Algorithms 4

Dataset

The dataset used for this analysis can be downloaded here. We put it into a
Pandas dataframe with the following piece of code:

dataset = pd.read_csv(“employee_attrition.csv”)

Taking a peek into the dataset after loading it into a Pandas dataframe. It looks
something like this:

The dataset contains data on terminations. For each of the 10 years, it shows
employees that are active and those that terminated. The intent is to see if
individuals’ termination can be predicted from the data provided.

Sat
isf

ac
tio

n l
ev

el

3.8
8
1.1
3.7
4.1
1
9.2
8.9
4.2
1.1
8.4
3.8
7.6
1.1
3.8

La
st

ev
alu

at
ion

 ra
tin

g

5.3
8.6
8.8
5.2
5
7.7
8.5
10
5.3
8.1
9.2
5.4
8.9
8.3
5.5

Pro
jec

ts
wor

ke
d o

n

3
6
8
3
3
7
6
6
3
7
5
3
6
7
3

Ave
ra

ge
 m

on
tly

 ho
ur

s

167
272
282
169
163
257
269
234
152
315
244
153
272
292
157

Tim
e s

pen
d co

m
pan

y

3
6
4
3
3
4
5
5
3
4
5
3
5
4
3

Sala
ry

W
or

k a
cc

iden
t

3.8
8
1.1
3.7
4.1
1
9.2
8.9
4.2
1.1
8.4
3.8
7.6
1.1
3.8

Pro
m

ot
ion

 la
st

5 y
ea

rs

5.3
8.6
8.8
5.2
5
7.7
8.5
10
5.3
8.1
9.2
5.4
8.9
8.3
5.5

Dep
ar

tm
en

t

3
6
8
3
3
7
6
6
3
7
5
3
6
7
3

167
272
282
169
163
257
269
234
152
315
244
153
272
292
157

https://www.kaggle.com/mczielinski/bitcoin-historical-data

Optimization Algorithms 5

Data Cleaning
The first task when analyzing any dataset is to clean the data. In our analysis,
the data was already cleaned. We don’t have any missing values.

dataset.isnull().values.ravel().sum()

Convert Categorical Features to
Numerical
We used dummy coding to convert features to Numerical,which is a commonly
used method for converting a categorical input variable into a continuous
variable. Presence of a level is represented by 1, and absence is represented by
0. For every level present, one dummy variable will be created. The code for the
snippet is as follows:

dummy_cols = [‘Department’, ‘salary’]
X = pd.get_dummies(X, columns=dummy_cols)

Split Between Training and Test
Dataset
The next step is to split the dataset between the training and test datasets so
that we can measure the accuracy later on. We make use of the train/test split
method of model selection of the Scikit-learn package to split the dataset such
that the training dataset contains 70% of the observations, and the test dataset
contains 30% of the observations.

X_train, X_test, y_train, y_test = train_test_split
(X, y, test_size = 0.3, random_state = 0)

Optimization Algorithms 6

Training the Model
Once we have all our features encoded and the training dataset ready, the next
step is to train a classifier model. We use the Logistic Regression method of the
linear model package in Scikit-learn to train our Logistic Regression Classifier.

classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train, y_train)

Checking the Model Accuracy
Checking the accuracy of the model is important because it helps to see if the
model is accurately predicting the true positives and the false negatives. We use
the accuracy score and confidence matrix provided by the Scikit-learn library to
determine the accuracy of our classifier.

In addition to this, we check Sensitivity, Specificity, F1 Score and Precision to
verify that our model has good predictive power.

Following are the results of same for the Logistic Regression Model:

Model Evaluation Metric

Accuracy
Precision Score
Recall Score
F1 Score

Metric Value

0.78
0.56
0.31
0.40

Optimization Algorithms 7

Considering Alternative
Models for Classification

The following models were considered, along with their respective metrics:

The Random Forest classifier seems to produce the best results,
so we’ll optimize it using optimization algorithms.

Accuracy

0.78

0.98

0.94

0.95

0.65

Presicion

0.56

0.98

0.87

0.86

0.39

Recall

0.31

0.95

0.88

0.93

0.84

F1-Score

0.40

0.96

0.88

0.89

0.53

Confusion
Matrix

[[5409 431]
 [1242 566]]

[[5817 23]
[84 1724]]

5617

[5578 262]
[117 1691]]

[[3503 2337]
[289 1519]]

Optimization Algorithms 8

Feature Selection Using
Model Importance

We can improve the feature selection of the model by graphing the feature
importance for the model. When graphing the feature importance for the
Random Forest classifier, we get the following graph:

In the above bar plot, we can clearly see each of the features in the order in
which they impact the employee attrition possibility. Using this information, we
can drop the features that have a very low importance value as this can help to
train the model faster without impacting the bias-variance trade-off.

Department Marketing
Department Management
Department product mng

Promotion last Syears
Department RandD

Department IT
Department accounting

Department hr
Department support

salary medium
Department sales

Department technical
salary high
salary low

Work accident
proyect worked on

average montly hours
last evaluation rating
time spend company

satisfaction level

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Optimization Algorithms 9

Optimizing Model Performance
Using Optimization Algorithms

K-Fold Cross-Validation

In machine learning, cross-validation is primarily used to estimate the skill of a
machine learning model on unseen data. It uses a limited sample in order to
estimate how the model is expected to predict in general when used to make
predictions on data not used during the training of the machine learning model.

It is a popular method because it is simple to understand and because it
generally results in a less biased or less optimistic estimate of the model skill
than other methods, such as a simple train/test split.

Advantages of K-Fold Cross-Validation

• Cross-validation can be used to compare the performances of different
predictive modeling procedures.

• Cross-validation can also be used in variable selection
• All observations are used for both training and validation, and each

observation is used for validation exactly once.

Disadvantages of K-Fold Cross-Validation

• Cross-validation only yields meaningful results if the validation set and
training set are drawn from the same population and only if human biases
are controlled.

• Since the order of the data is important, cross-validation could be
problematic for time-series models.

Optimization Algorithms 10

Code Snippet

Applying k-Fold Cross Validation
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X =
X_train, y = y_train, cv = 10)
accuracies.mean()
accuracies.std()

Implementation of K-Fold with Employee Attrition

Optimization Algorithms 11

Batch Normalization

Batch normalization is a method used to normalize the inputs of each layer
in order to fight the internal covariate shift problem, thereby improving
the performance and stability of neural networks. This also makes more
sophisticated deep-learning architectures.

The basic idea behind batch normalization is to limit covariate shift by
normalizing the activations of each layer (transforming the inputs to be mean 0
and unit variance). This allows each layer to learn on a more stable distribution
of inputs and would thus accelerate the training of the network.

We normalize the input layer by adjusting and scaling the activations, which
allows each layer of a network to learn more independently of other layers.

Advantages of Batch Normalization

• Networks train faster. Each training iteration will actually be slower
because of the extra calculations during the forward pass and the additional
hyperparameters to train during back propagation. However, it should
converge much more quickly, so training should be faster overall.

• It allows higher learning rates . Using batch normalization allows us to
use much higher learning rates, which further increases the speed at which
networks train.

• It makes weights easier to initialize . Weight initialization can be difficult,
and it’s even more difficult when creating deeper networks. Batch
normalization seems to allow us to be much less careful about choosing our
initial starting weights.

Disadvantages of Batch Normalization

• Not good for online learning
• Not good for RNN, LSTM
• Different calculation between train and test

Optimization Algorithms 12

Code Snippet

from keras.layers.normalization import BatchNormalization
model = Sequential()
model.add(Dense(64, input_dim=14, init=’uniform’))
model.add(BatchNormalization())
model.add(Activation(‘tanh’))
model.add(Dropout(0.5))
model.add(Dense(64, init=’uniform’))
model.add(BatchNormalization())
model.add(Activation(‘tanh’))
model.add(Dropout(0.5))
model.add(Dense(2, init=’uniform’))
model.add(BatchNormalization())
model.add(Activation(‘softmax’))
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=
True)
model.compile(loss=’binary_crossentropy’, optimizer=
sgd)
model.fit(X_train, y_train, nb_epoch=20, batch_size=16,
show_accuracy=True, validation_split=0.2, verbose = 2)

Implementation of Batch Normalization with Employee Attrition

Optimization Algorithms 13

Grid-Search

Grid-searching is the process of searching the data to configure optimal
parameters for a given model. There are certain parameters necessary
depending on the type of model utilized. Grid-searching does not apply to only
one model type. Grid-searching can be applied to calculate the best parameters
to use for any given model across machine learning. It works in an iterative way.
For some of the parameters associated with the model, we enter good probable
values and the grid-search iterates through each of them, compares the result
for each value, and then gives you the parameters best suited for your model.

Advantages of Grid Search

• Grid-search is used to find the optimal hyperparameters of a model which
results in the most ‘accurate’ predictions.

Disadvantages of Grid Search

• Grid-search does not perform well when it comes to dimensionality; it suffers
when the evaluated number of hyperparameters grows exponentially.

Optimization Algorithms 14

Code Snippet

from sklearn.model_selection import GridSearchCV
parameters = [{‘C’: [1, 10, 100, 1000], ‘kernel’: [‘linear’]},
 {‘C’: [1, 10, 100, 1000], ‘kernel’: [‘rbf’], ‘gamma’: [0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9]}]
grid_search = GridSearchCV(estimator = classifier,
 param_grid = parameters,
 scoring = ‘accuracy’,
 cv = 10,
 n_jobs = -1)
grid_search = grid_search.fit(X_train, y_train)
best_accuracy = grid_search.best_score_
best_parameters = grid_search.best_params_

Implementation of Grid Search with Employee Attrition

Optimization Algorithms 15

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an optimization algorithm in which
samples are selected randomly instead of using a whole data set for each
iteration or using data in the order they appear in the training set. We adjust the
weights after each iteration for our neural network.

In a typical gradient descent, the whole dataset is taken as a batch (the
total number of samples from a dataset used to calculate the gradient for
each iteration) which is problematic when the dataset is significantly large.. It
becomes computationally expensive to perform. Stochastic gradient descent
solves this problem by using a single sample to perform each iteration.

Advantages of Stochastic Gradient Descent

• It is suited for highly non-convex loss functions, such as those entailed in
training deep networks for classification.

• It does the calculations faster than gradient descent and batch gradient
descent.

• Stochastic gradient descent performs updates more frequently and therefore
can converge faster on huge datasets.

Disadvantages of Stochastic Gradient Descent

• SGD requires a number of hyperparameters and a number of iterations.
• It is also sensitive to feature scaling.
• Error function is not well minimized.
• There is a common learning rate for all parameters.

Optimization Algorithms 16

Code Snippet

from keras.models import Sequential
from keras.layers import Dense
classifier = Sequential()
classifier.add(Dense(output_dim = 6, init = ‘uniform’, activation = ‘relu’,
input_dim = 11))
classifier.add(Dense(output_dim = 6, init = ‘uniform’, activation = ‘relu’))
classifier.add(Dense(output_dim = 1, init = ‘uniform’, activation = ‘sigmoid’))
classifier.compile(optimizer = ‘adam’, loss = ‘binary_crossentropy’, metrics =
[‘accuracy’])
classifier.fit(X_train, y_train, batch_size = 10, nb_epoch = 100)

Implementation of Stochastic Gradient Descent
with Employee Attrition

Optimization Algorithms 17

RMSProp

The RMSprop (Root Mean Square Propagation) optimizer is similar to the
gradient descent algorithm with momentum. The RMSprop optimizer restricts
the oscillations in the vertical direction. Therefore, we can increase our learning
rate, and our algorithm can take larger steps in the horizontal direction and
converge faster. It utilizes the magnitude of recent gradients to normalize the
gradients. We always keep a moving average over the root mean squared
(hence RMS) gradients, by which we divide the current gradient.

Gradients of very complex functions - such as neural networks - have a
tendency to either vanish or explode as the energy is propagated through the
function. The effect has a cumulative nature — the more complex the function is,
the worse the problem becomes.
RMSprop is a very clever technique to deal with this problem. It normalizes the
gradient itself by using a moving average of squared gradients. This balances
the step size; it decreases the step for large gradients to avoid exploding, and
increases the step for small gradients to avoid vanishing.

Advantages of RMSProp

• It is a very robust optimizer which has pseudo-curvature information.
Additionally, it can deal with stochastic objectives very nicely, making it
applicable to mini batch learning.

• It converges faster than momentum.

Disadvantages of RMSProp

• Learning rate is still manual, because the suggested value is not always
appropriate for every task.

Optimization Algorithms 18

Implementation of RMSProp Descent with Employee Attrition

Optimizers

K-fold
Grid Search
Batch Normalization
Stochastic Gradient Descent
RMSprop

Accuracy

0.9740
0.9742
0.9395
0.9568
0.9461

Performance of Model After
Using Optimization Algorithms

Below are the optimization algorithms with their respective metrics.

Optimization Algorithms 19

Conclusion

We implemented different models to predict attrition in a company, measured
their accuracy, and employed the various optimization algorithms on a support
vector machine to optimize its parameters. We observed that the accuracy
of a model is improved by 3.4% - 94% without optimization and 97.4% with
optimization using grid search. In this case, it is not a significant improvement.
However, in reality we might have many more data sets where optimization
improves performance significantly.

The purpose of the paper is to give an idea of various optimization techniques
and how optimization helps to improve performance of any machine learning
model.

Finally, we have a working model to predict which employees will leave the
company and who will stay based on five input parameters with an accuracy of
almost 98 percent.

Optimization Algorithms 20

Appendix A

Source Code and Datasets

Appendix B

References

Section

Employee Attrition

Data

https://www.kaggle.com/an

alystanand/employee-

attrition

Code

https://github.com/akbo

rse1996/Employee_Attrition

About
GlobalLogic
GlobalLogic is a leader in digital product
engineering. We help our clients design and
build innovative products, platforms, and digital
experiences for the modern world. By integrating
strategic design, complex engineering, and
vertical industry expertise — we help our clients
imagine what’s possible and accelerate their
transition into tomorrow’s digital businesses.

Headquartered in Silicon Valley, GlobalLogic
operates design studios and engineering centers
around the world, extending our deep expertise
to customers in the communications, automotive,
healthcare, technology, media and entertainment,
manufacturing, and semiconductor industries.

www.globallogic.com

