
www.globallogic.com

AUTOMATION
FRAMEWORK
Technical Documentation

April 2020

Automation Framework: Technical Documentation

Overview of BDD testing
Behavior-driven development or BDD is a more accessible and
effective way for teams new to agile software delivery to test
business behavior, rather than a computer function.

BDD approach uses basic concepts of “given, when, then” to
describe various user scenarios. It offers an improvement in
communication methods between product owners, developers,
testers, and users with or without a testing tool. BDD is commonly
used with automation using Gherkin and combined with unit testing.

Advantages of BDD

• Automation engineers no longer define ‘test’ but are defining
 ‘behavior.’

• Communication of business requirements between
 developers, testers, and product owners improves.

• The learning curve is much shorter when explaining BDD as
 it uses simple language.

• Being non-technical, it can reach a wider audience.
• The behavioral approach defines acceptance criteria before

 development.

BDD helps develop, test, and think about the code from the
business owner’s point of view.

Common problems with
automation
Here are some of the common problems faced by the Automation
QA while automating scripts. These must be addressed at the
beginning of the development to avoid inefficiency and code
repeatability later on.

Code Duplication
Most mobile development applications are developed on multiple
platforms, commonly on iOS and Android. When developers try to
automate application functionality, they need to write the same script
multiple times to support all platforms that led to code duplication.

1

It also includes duplication of code in debugging tools like taking
screenshots, video recording, and logs management.coming
from. When an IP spoofing attack occurs, this source details that
IP address specifies the sender of the packet is not actual, but a
fraudulent IP address which is permitted to access the website. This
will make the server handle the request packet as it is coming from
the permitted user. Then the server will grant access to the attacker
causing various security threats.

Test Suite
After developing scripts, the developer’s second most common
challenge is to create the test suite to execute particular scripts as
per the client’s requirements. In some cases, there is also a need to
run scripts based on conditions like:

• Executing specific tests instead of a complete package.
• Executing platform-specific tests, for example, Android-only

 or iPhone-only.
• Conducting tests with simulators.
• Executing tests dependent on real devices.

Custom Report
The most important aspect of any action is its result and, in the case
of automation, its execution report. However, the most commonly
used automation does not provide us with detailed information that
can identify the exact cause of the failure.

To overcome these problems, we have developed an Automation
framework for accessing automation functionalities, based on the
Spock Framework.

Automation Framework: Technical Documentation

2

Overview of the Spock framework
Spock is a test automation framework that uses Groovy to write
automation scripts and forces automation developers to follow BDD
conventions. The Spock framework also supports parameterized
test scenarios that help in testing particular scenarios with different
conditions.

Our Customized Automation Framework
The diagram below gives insight into how the framework works.

This framework aims to provide the initial platform the ability to write
integration tests of the multi-platform application. It is based on the
following stacks:

• Appium
• Spock framework
• Groovy
• Java

Automation Framework: Technical Documentation

3

Components of Framework
The framework consists of the following major components:

1. Page Objects
2. Integration Tests
3. Custom Debugging Tools
4. Reports Generation

1. Page Objects

This component provides the application screens in an easily
accessible format. The page object is created based on the platform
value passed in the Gradle environment. All action methods are
accessible only through the standard interface.

Class diagram of Page classes:

Automation Framework: Technical Documentation

4

PageObject consists of the following major components:
• Pages(Screen)
• Page Modules
• Other Utilities
• Application.java(App flow)

Pages(Screen)
One of the most critical parts of the framework, Pages(Screen)
interacts directly with the UI screen and performs all activities related
to the user interface on behalf of the user.

Page Modules
Page Modules combine the typical set of methods to call to perform
a particular sequence in the application. It helps connect processes
like entering a username, entering a password, and clicking the
Login button for login functionality.

Utilities
This contains the utility classes used in different modules such
as Constants, Formatters, classes to access property files, and
interacting with files to extract necessary information.

Application.java
This handles those functionalities not specific to the particular
screen. In other words, it works on the application level to maintain
the states. Application.java handles specific scenarios such as
common alerts, notifications that can appear on any screen.

Sequence diagram for PageObject creation:

Automation Framework: Technical Documentation

5

2. Integration Tests

This is where automation scripts are written using Gherkin
statements. A platform-specific device driver acts as a bridge
to interact with the device screen for executing any scripts. The
following sequence diagram provides clarity on how the device driver
creation happens.

3. Debugging

This component provides debugging tools to investigate test failures.
It consists of the following sub-components:

• Screenshots and video capturing
• File logging

Screenshots
This provides the ability to capture device screenshots in case of a
test failure, so the developer can configure it to capture periodically.
Developers can also configure to capture a video recording of each
scenario execution. Save captured files in a folder with the test ID
name and a filename titled for each scenario.

File logging
This provides the ability to capture logs generated during test
execution into the file for debugging. Save generated files in their
respective test ID folders. The filename here is also the title of each
scenario.

Automation Framework: Technical Documentation

6

4. Reports Generation

This component can generate test reports, customize using CSS,
and provide the capability to add details such as:

• Tests count
• Test passed
• Test failed
• Passing percentage
• Platform information
• Scenario details
• Total time taken for execution
• Test ID, which can be linked with the project management

 tools
• And many more.

References
Online Resource
• http://spockframework.org/

Automation Framework: Technical Documentation

7

