
www.globallogic.com

Optimizing Your

With Auto-Scaling

Microservices
Architecture

Optimizing Your Microservices Architecture With Auto-Scaling | 2

Abstract
In this white paper, GlobalLogic takes a closer look at the method
of elastic auto-scaling used in microservices architecture of your
cloud operations. By examining the different auto-scaling meth-
ods involved in event-centric microservices architecture, we pro-
vide insights to the reader on their use for optimized processes.
This white paper serves as a guide to any organization using cloud
microservices architecture or planning on migrating to it soon.

Optimizing Your Microservices Architecture With Auto-Scaling | 3

Contents
Introduction

Enhancing Performance of Event

Driven Architecture with Auto-Scaling

An Introduction to Backpressure

Understanding Backpressure Management

Mechanism In Microservices

Detecting Backpressure in AWS

Understanding More About Traffic Factor

Horizontally Auto-Scaling EKS Pods Based

on Traffic Factor

Horizontal Auto-scaling EKS Clusters with

Cluster Autoscaler (CA)

Conclusion

04

05

06

07

09

11

12

14

15

Introduction

Optimizing Your Microservices Architecture With Auto-Scaling | 4

As cloud computing takes the main stage, various sectors
ensure to incorporate this technology to continue improving
their digital operations and deliver optimal results. With the
stakeholders focusing on building effective applications, the
use of microservices proved to be a huge step-up for their
business. Unlike the traditional monolithic architecture that
composed of a bulky application, microservices architec-
ture provides a single application with smaller services
which communicate with each other. It helps teams code
better, use other components flexibly, and optimize
resource and cost distribution in applications.

In a microservices architecture, each service faces a certain
load. The difference in load requires a different number of
instances to be created for each service and due to the
dynamic nature of the requests, a real-time load distribution
method needs to be deployed to allocate and use the
resources optimally. This method is the essence of
auto-scaling. It provides a dynamic way of allocating
resources based on the load faced by each process in the
microservices architecture. However, there are many ways
of auto-scaling. With each having a set of advantages and

disadvantages of their own, choosing the right scaling
method depends on several factors such as traffic factor,
backpressure, etc.

As an expert in cloud-based operations, GlobalLogic has
worked on numerous cloud-based microservices architec-
ture for leading businesses across the globe. With a
dedicated team of professionals having adept knowledge
of the subject, we explore the latest technologies and
trends in the field of cloud computing and microservices.

Based on our expertise in this domain, we have researched
the most popular open-source tools that help you
auto-scale your microservices. By assessing these tools
and various methods of elastic auto-scaling, we provide a
guide to help readers select the best scaling process for
their unique project. Along with information on concepts of
backpressure and congestion, we have also provided
details on distributed queuing systems such as Kafka for
readers to get comprehensive insights on dealing with their
microservices architecture to improve the project scalability
and results.

Enhancing Performance
of Event Driven
Architecture with
Auto-Scaling

Optimizing Your Microservices Architecture With Auto-Scaling | 5

Event Driven Architecture (EDA) is used when distributed
systems need to be integrated for more efficient communi-
cations between them. One of the most practical examples
of EDA is ecommerce sites; the distributed systems could
be the product catalogue, checkout page and

orders tracking. When a new product is put in the cart it
sets off a new event. The event is communicated to the
checkout page which now reflects the product and its
price. When the purchase is complete, the event is commu-
nicated to the orders tracking page and so on.

A variety of heterogeneous systems can be integrated
using the EDA approach which makes them easier to scale,
for example when there is an unusually high number of
shoppers using the site at the same time. The EDA
approach to microservices allows a more efficient flow of
dynamic data which encourages taking action as soon as
the event is generated, for optimized outcomes. On the
front end, this means that a purchase is progressing
smoothly in real-time.

However, the EDA-based solutions with microservices are
not without their challenges. One of the major challenges, is
dealing with massive event ingestion scenarios. In cases
like these, thousands to millions of events need to be
processed at the same time while ensuring that that back-
end infrastructure is not suffering. Contention, lack of stabil-
ity, and performance issues can all arise if the microservices
are overwhelmed with the volume of incoming events.

This is where the elastic auto-scaling capabilities associat-
ed with Kubernetes comes into play. Kubernetes is an
open-source platform that helps in the management and
discovery of containers of services that make up an appli-
cation, and facilitates automation. The containers are
grouped into logical units which are easy to scale using
elastic auto-scaling.

However, having elastic capabilities sometimes is not
enough. It is also important to know whether to scale up or
down the infrastructure at any given point in time. Even
when an instance is idle, it is charged for the time it is pow-
ered on. At times like this, the process switches into using
the concept of shrinking, which detects the idle nodes and
reduces the instances to prevent resources from being
expended.

Our focus will be on Kafka, a typically stochastically distrib-
uted queuing system. Kafka is a stream-processing
software that can not only build data pipelines to get data
between systems or applications, but also build real-time
streaming applications that can react or transform based
on the data. The open-source software does this by
running as a cluster on servers that span multiple datacen-
ters.

To understand all this, we need to look at dynamic queues
including concepts like traffic factor and backpressure. In
the next chapter we will take a more detailed look at back-
pressure and congestion, which will help you understand
how massive ingestions can be handled properly.

An Introduction to
Backpressure

Optimizing Your Microservices Architecture With Auto-Scaling | 6

A Pod in a microservice architecture can be defined as the
most basic and smallest object that represents your micro-
service in action. It usually contains one container but can
be a group of more than one container as well. In elastic
cloud computing, the ability of the system to function,
especially under heavy-load scenarios is a crucial factor
while increasing the Pod instances. It could be compro-
mised due to extended memory usage of the Pod contain-
ers or event accumulation in case of EDA event hub, there-
by leading to overall poor performance of the system.

In such scenarios, the system deliberately pushes back the
overflowing requests to avoid an overload. This resistance
to accept new events or decreased system responsiveness
to deliver the desired outcome is termed as backpressure.
Since the demand exceeds the capacity of the system to
process them, if it is not mitigated in time, it will impact the
running processes.

Understanding
Backpressure
Management
Mechanism In
Microservices

Optimizing Your Microservices Architecture With Auto-Scaling | 7

The preferable solution of developing in-built capacities in
individual systems does not work in favor of large-scale
service architectures thanks to the dynamic nature of the
cloud and containers. To ensure stability and smooth
functioning of processes, interactions at the producer-con-
sumer level need to be controlled along with systematic
addition of new instances, which can be done using back-
pressure management mechanisms. Typically, they choose
one of the following strategies to handle the excessive
demand faced by systems in a backpressure condition:

1. Throttling

To reduce the bandwidth of any system, one of the effec-
tive solutions is to reduce the rate of incoming flow of
requests from producers. This is usually done to allow time
for consumers to process pending requests before restor-
ing its normal situation. Once this is achieved, producers
can produce messages at their normal rates.

But on typical distributed queuing systems such as Kafka,
the clusters do not have the ability to limit the number of
consumers on the system. It is designed in a way that
consumers can consume at a fast pace and producers can
push large volumes of data quickly. Effective management
on such systems can be done by allocating new partitions,
compressing the size of the message, etc. Configuration
properties of the two consumer classes offered by Kafka,

written in Scala and Java can be modified to enhance the
performance of the system. For example, the amount of
data a server should return for a message of a particular
size, the amount of data to be returned per partition, etc.

2. Horizontal Pod Autoscaler (HPA)

If the workload can be scaled, HPA responds to the
resource requirements by increasing or decreasing the
number of Pods. It ensures there is consistent performance
irrespective of the situation, leading to cost-effective quali-
tative results. Few instances when HPA adds more Pods
are when the memory threshold is exceeded, an increased
rate of client requests per second is recorded, or while
servicing external requests. Each workflow has a different
HPA object, which regularly checks the pre-decided
threshold of the metrics to accommodate changes at the
earliest. While adding new consumers in the consumer
groups is easy, it cannot cross the number of partitions.
This increased number of consumers improves the
throughput of the system and reduces the workload. A
balance is created on all individual EC2 (Elastic Compute
Cloud) nodes, slowly returning to stable condition. This is
the recommended method to increase the number of
instances for effectively scaling an EKS (Elastic Kubernetes
Service) cluster.

Optimizing Your Microservices Architecture With Auto-Scaling | 8

3. Vertical Pod Autoscaler (VPA)

Unlike horizontal scaling, vertical scaling is done to increase
the power capabilities of the system. For example, ramping
up the storage capabilities of the CPU, RAM, etc. VPA
automatically recommends the values for CPU limits, based
on the dynamic incoming requests. Hence, this is usually
implemented when the messages are processed in batch-
es. Because when the demand increases, the size of the
batch increases, pressurising resources like the CPU. In
such a situation, VPA scales or enhances resources like the
CPU and memory and slowly brings the system back to its
stable condition. Since microservices architecture normally
deals with stateless processing and not with internal states,
vertical scaling might not be the ideal choice for them.

4. Cluster Autoscaler (CA)

While horizontal scaling scales the number of consumers,
there is a threshold for each cluster which should not be
crossed ideally. Once it is exceeded, efforts to mitigate
backpressure will not result in a stable system as it
indicates an exhaustion of resources on that particular
cluster. During such situations, AWS EK CA increases the
number of EC2 instances to the EKS cluster. The number
of nods is adjusted as per the capabilities of the Pods to
share the workload. The configurations are aligned as per
the EC2 auto-scaling group, so that scaling is automatically
done at the EC2 level when new Pods cannot be added to
the system.

In the next chapter, we will talk more about detecting back-
pressure in AWS.

Detecting Backpressure
in AWS

Optimizing Your Microservices Architecture With Auto-Scaling | 9

Amazon Web Services (AWS), is one of the most popular
cloud computing platforms available today. The variety of
services offered and the reliable support has made AWS a
leader in this space. But like any other cloud service, AWS
too experiences backpressure when the demand is high. In
the earlier chapter, we shed some light on backpressure
and its management mechanisms. In this chapter, we
examine a few backpressure symptoms in respect to AWS
specifically.

Increasing queue dept at Kafka Topics: This is also called
the “eager producer, lazy consumer” scenario and is char-
acterized by consumers not being able to process events in
a timely manner. This can happen because of increased
input throughput from the producer end, or due to some
other existing performance issues.

Latency at event execution: This happens when events are
getting pulled from the topic but the actual processing
speed is not able to keep up at an equal pace creating a
distortion in the flow. Latency can have many other causes
which include issues with resources, locking conditions,
bad coding, and even contention or bottlenecks at some
back-end resource like database connection.

Contention at bare-metal resource level: This is caused by

CPU usage spiking to 90-100% or physical memory usage
spiking to 95-99%. Contention also happens when disk I/O
transfer rates spike towards the maximum admitted rate.
These are just some the typical scenarios, however, there
could be other causes like competing virtual machines or
an issue with a connected physical resource.

Traffic Factor Ratio

Traffic Factor Ratio (TFR) is defined as the coefficient
between the number of events that arrive per unit of time
and the number of events that are consumed per unit of
time. The TFR is useful in determining the state of
event-driven-led processing, specifically in the context of
stochastically distributed queueing systems like Kafka. We
will be talking more about the Traffic Factor Ratio in the next
chapter.

In a typical steady system, the traffic ratio should be below
a value of 1. If the value is higher than 1, the system is said
to be in non-steady state, and we are in the presence of an
‘eager producer, lazy consumer’ scenario. When this
indicator of backpressure is evident, it is a clear sign that a
further Pod horizontal scaling is required.

Optimizing Your Microservices Architecture With Auto-Scaling | 10

Here’s how symptoms of backpressure can
be detected and solved in AWS:

At the Topic level: If TFR is greater than 1 at the Topic
level then the solution is to scale out the consumer group.
By expanding the EKS service by adding more Pod
instances to a service. The additional Pod instances
increase out throughput for the topic. For seamless scaling
at the topic level, a TFR custom metric can be created on
AWS CloudWatch, and further monitored in order to trigger
the scaling of Pods inside the EKS service whenever the
condition is true.

At the Pod level: Pod instances health can be monitored
by using the K8S (Kubernetes) metrics server in terms of
mean CPU and memory usage. When the K8S metrics
server detects that the mean CPU/memory usage is going
beyond the upper threshold, the Horizontal auto-scaling
activates. Processing capacity is increased by scaling up
the number of Pods for the duration that they are required.
If, however, the mean CPU/memory usage drops below the
predefined minimum threshold due to idle condition, the
number of Pods can be further reduced, by shrinking the
pool. This mechanism helps to maintain a Pod economy,
by keeping only the number of Pods that are required at a
given time in order to avoid either a CPU peak load or CPU
idle state.

At the Cluster level: There might be cases where
additional Pod instances are required but scaling cannot
proceed further. This could be because of contention on
the existing EC2 instances like CPU limits reached, not
enough memory, file descriptors exhausted, etc. In such a
case, scaling needs to take place at the Cluster level. For
this to happen, an EKS Cluster Auto-scaler (CA) needs to
detect the conditions and instruct the Auto-Scaling Group
(ASG), to increase the cluster size. Similarly, when the CA
detects some nodes are idle, it informs the ASG to reduce
the cluster size accordingly to economize resources.

At the Microservices level: At a functional level, AWS
CloudWatch can also monitor the microservices that are
actually consuming events - i.e. an abstract or concrete
microservice - in order to measure total average message
processing time. Pre-defined thresholds can be set as the
upper and lower limits which can trigger specific actions if
these thresholds are reached/crossed. Latency in message
processing can lead to event accumulation which in turn
can lead to TFR > 1. However, at this level auto-scaling
might not always be effective due to multiple factors that
could cause the scenario. Simply scaling Pod instances in
the consumer group or cluster won’t make a difference if
there is another underlying root cause. At the microservices
level the most effective automatic action would be to alert a
specific group to take appropriate actions, or even trigger
an intelligent mechanism to mitigate the root cause.

Traffic Factor & Its
Effect On Microservices

Optimizing Your Microservices Architecture With Auto-Scaling | 11

Understanding how a microservice can scale quantitively is
determined by the traffic it can handle. This means, the
number of queries per second a system can handle. Ana-
lysing this is crucial if you require the system to graciously
respond to the overwhelming incoming requests without
impacting its performance or in the worst-case scenario,
crashing. In the context of microservice architectures, this
is referred to as traffic factor. To decide on the action to be
taken to stabilise the state, first the traffic factor ratio (TRF)
is calculated. It is the ratio between the number of incoming
events and consumed events at a given time.

If the TRF is below 1, the system is said to be in a steady
state. The producer is not generating more requests than
the consumer can consume. But if the TRF is above 1, the
system is in a non-steady state, where the incoming events
from the producer surpasses the events consumed by the
consumer, also known as ‘eager producer, lazy consumer’
scenario.

TFR = Average number of bytes per second received from
producers/ Number of bytes per second sent to consumers

According to this diagram, TFR = P/ (C1+C2+C3)

If TFR > 1 the system is said to be in a non-steady state

If TFR <= 1 the system is said to be in a steady state

Situations where TFR could go above 1 are when the
number of customer instances are not increased as per the
traffic; number of topic partitions are not scaled; the
clusters are not scaled, etc.

To tackle this issue in sophisticated microservice architec-
tures, auto-scaling is done at the topic, Pod, cluster, or
even the microservice level when required. Based on the
pre-configured threshold value, automatic scaling or
shrinking of the instances will take place. If the TFR crosses
the pre-decided threshold, it indicates that the consump-
tion rate needs to be increased for a better throughput and
lesser workload. If the TFR is below the pre-decided
threshold, it indicates that the idle customer instances can
be removed to enhance efficiency of the system.

Horizontally
Auto-Scaling EKS Pods
Based on Traffic Factor

Optimizing Your Microservices Architecture With Auto-Scaling | 12

Now that we have discussed Traffic Factor and how to
calculate TFR, we can move on to understanding how it is
used in horizontal auto-scaling of EKS (Elastic Kubernetes
Services) Pods in AWS. EKS was specially developed to be
easily integrated with AWS. The service helps to manage
scalability of the Kubernetes (K8S) control plan nodes
including those involved in EDA-based solutions.

To determine whether to scale out or shrink, the system
makes use of AWS MSK (Managed streaming for Apache
Kafka) which automatically gathers Apache Kafka metrics
and sends them to Amazon CloudWatch. This service is
available by default on AWS.

In AWS MSK implementation, backpressure can consist of
monitoring the Kafka topic’s traffic factor in real-time; once
traffic factor is higher than a pre-established threshold,
automatic compensation is triggered which should take an
action. That action results in scaling out the number of

microservice consumer instances by means of an EKS
Horizontal Pod Autoscaler (HPA).

Traffic factor for a specific Kafka topic can be calculated
using two provided custom metrics as shown below.

The custom metrics are numerically represented and the
TFR can be calculated by dividing the former by the latter.
A pre-configured upper threshold is set depending on the
requirement of the process. In most cases, the value is 1
but it can be higher if required. AWS CloudWatch can be
configured to pull these values from the custom metrics. If
the value of the TFR is higher than the upper threshold,
auto-scaling out of the Kubernetes cluster can be triggered.

To ensure that auto-scaling takes place in the K8S cluster
associated with the right consumer microservices Pod, the
respective microservice needs to be deployed on to an
AWS EKS infrastructure. This can be done by leveraging
the Amazon CloudWatch Metrics Adapter for Kubernetes –
another service developed for AWS.

Namespace Metric Name Dimensions Description

AWS/Kafka
Bytes in Per

Second

Bytes out Per
Second

Topic

TopicAWS/Kafka

Average number of
bytes per second

received from
producers.

Average number of
bytes per second

sent to consumers.

Optimizing Your Microservices Architecture With Auto-Scaling | 13

How it works

When pre-configuring the upper threshold, if the value is set
to 2, when producer throughput approaches twice the
consumer throughput, scaling is triggered. In this scenario,
scaling out happens at the consumer end to increase
throughput and compensate for the increase at the produc-
er end.

While one set of metrics triggers scaling out, setting a
minimum threshold can help shrink the Kubernetes cluster.
When the TFR falls below this pre-configured lower thresh-
old, it is an indication of an over-sized consumer group
which leads to idle condition. In this case scaling in or
shrinking of the cluster will help conserve resources.

Setting both upper and lower threshold for traffic factor
allows the dynamic auto-scaling of Kubernetes cluster
based on demand. This type of scaling is termed as elastic
auto-scaling of consumers.

The K8S Metrics Server also provides another factor that is

Representation of backpressure compensation mechanism for Pod autoscaling in an event-driven-led architecture with
producer/consumer microservices.

used by HPA to trigger scaling of Pods. This metric mea-
sures the average Pod CPU/memory usage, which is moni-
tored by default OOB (Out Of the Box) using the Pod
CPU/memory Metrics. Once again, pre-established upper
and lower thresholds can be set for the average CPU/mem-
ory usage. If the metrics show a value near the upper
threshold, scaling out is triggered and the level of Pod
parallelism (the number of Pods that can run in parallel and
can coordinate among themselves), is increased. If it drops
to the lower threshold, scaling in takes place and Pod
instances are shrunk.

Backpressure Compensation Mechanism

While the whole system might appear to be complicated,
AWS has developed a user-friendly platform in which imple-
mentation of horizontal auto-scaling of ESK Pods is a
simplified process. The benefits of seamless processing
and resource conservation make the implementation not
only worth it but also necessary.

Horizontal Auto-scaling
EKS Clusters with
Cluster Autoscaler (CA)

Optimizing Your Microservices Architecture With Auto-Scaling | 14

When deploying microservices, the Elastic Kubernetes
Services (EKS) is one of the most preferred Kubernetes
services. As the number of requests is never fixed, the need
for allocating the right size of EKS cluster takes high priority.
This issue of traffic impacts the overall application, however
the EKS has a way to deal with this. The Cluster Autoscaler
plays an important part in this. Based on the scheduling
statistics of Kubernetes(K8S) which factor in various indica-
tors such as number of Pod instantiations, the CA optimis-
es the cluster size. When HPA decides to scale-out the
number of Pod instances, the new Pods begin to be com-
missioned. While this is the ideal approach, if the process
continues to increase the number of Pods, it can result in
failure as there will be no EC2 instance ready for the new
Pod, thereby causing the exhaustion of the EKS cluster.

Auto-scaling based on K8S scheduling stats

This results in wastage of resources, and since the process
keeps recurring, the overall loss of resources can be high.
In scenarios like this, CA intervenes to help the architecture
by expanding the cluster and adding a new EC2 instance to
the EKS cluster so as to turn the instantiation of the new
Pod into a success. Similarly, when the EC2 instances

register small or no-activity, the CA helps in optimizing the
cluster. It shrinks the cluster, therefore removing the
unused EC2 instance, and follows the process of Pod
re-agrupation where the existing Pods are relocated to
other nodes.

In a way, CA plays a crucial role in addressing the problems
of backpressure and traffic factor. While these issues can
be the cause of sudden influx or drop in the service
requests, the use of Horizontal Auto-scaling CA has proven
to be favourable for microservices.

Conclusion

Optimizing Your Microservices Architecture With Auto-Scaling | 15

In this white paper, we looked at the various aspects of
elastic auto-scaling and specifically its application to AWS
systems. We covered three main areas:

• When to scale: Scaling takes place when a system
reaches a non-steady state or when there is any dispropor-
tionate activity between the producers and consumers.
When backpressure is detected in the system, scaling is
triggered.

• How to scale: We also examined the fact that scaling by
itself is not enough. For a seamless process, the system
needs to know whether to scale out or to scale in and at
which end of the microservices architecture scaling needs
to occur.

• Where to scale: the other aspect we looked at was the
different levels where scaling could occur: Topic level, Pod
level, Cluster level, and Microservices level. We delved in
detail on how metrics like TFR (Traffic Factor Ratio) are
used to detect backpressure/congestion and can be used
to identify at which level scaling should occur.

The final bit we cover here, is how to know that the Elastic
Auto-Scaling implemented is working for your system. As
with any other scenario, to get a result we need to run tests.
With auto-scaling, Iterative Performance Testing is highly

recommended. It is a testing method which uses real loads
coming from real-world peak-load scenarios to evaluate
whether the theoretical configuration actually works.

Once the auto-scaling configuration is set, a load-test
needs to be done to check if it behaves as it’s supposed to.
The testing should mimic real-world scenarios and match
the same peak-load and no-load conditions. What we want
to know is whether scaling out happens as expected when
the load is high and scaling in when the load drops. Aside
from checking the scaling capabilities of the platform, we
also need to check the responsiveness of the system
during the load-tests. Any signs of contention, latency, hot
spots, bottlenecks, or other generic performance issues will
require attention, introducing further small changes on the
configuration as needed.

The next step in iterative performance testing after the
load-test is a Performance Test. A performance test is
carried out by increasing the load on the system over time,
while evaluating the results and making any required minor
adjustments. The iteration should be repeated whenever
necessary to re-check performance until the objective peak
load is reached.

About GlobalLogic

Optimizing Your Microservices Architecture With Auto-Scaling | 16

GlobalLogic is a leader in digital product engineering. We
help our clients design and build innovative products,
platforms, and digital experiences for the modern world. By
integrating strategic design, complex engineering, and
vertical industry expertise—we help our clients imagine
what’s possible and accelerate their transition into tomor-
row’s digital businesses.

Headquartered in Silicon Valley, GlobalLogic operates
design studios and engineering centers around the world,
extending our deep expertise to customers in the commu-
nications, automotive, healthcare, technology, media and
entertainment, manufacturing, and semiconductor indus-
tries.

www.globallogic.com

