
Artificial Intelligence
in FinTech: Part 2

Authored by
Dmytro Vlasenko

Artificial Intelligence in FinTech: Part 2

Ana lyz ing Market Sent iment Us ing Twi t te r 1
 Procur ing the Twi t te r Data
 Comple t ing the Por t fo l io
R isk Ana ly t ics fo r Loan E l ig ib i l i t y 2
 About Random Fores t C lass i f ie r
 Dataset
 Data C lean ing
 Imput ing Miss ing Data
 D imens iona l i t y Reduct ion Us ing Cor re la t ion
 Conver t Categor ica l Featu res to Numer ica l
 Sp l i t Dataset in to Tra in ing and Test Dataset
 Tra in ing Random Fores t C lass i f ie r
 Check ing The Accuracy Of The Mode l
 Low Sens i t i v i t y
 Cons ider ing A l te rna t i ve Mode ls fo r C lass i f ica t ion
 S ide Note About XGBoost
 Featu re Se lec t ion Us ing Impor tances o f the Mode l
 Forecast ing Defau l t
 Put t ing the Mode l in to Product ion
Detect ing Cred i t Card Fraud w i th Unsuperv ised Learn ing 9
 K-Means C lus te r ing
 F i t t ing the Mode l
 Pred ic t ing Fraud Transact ions in the Futu re
Expos ing F in tech A I as Chatbots 11
Conc lus ion 12
Append ix 13
 Source Code and Datasets

Refe rences 13

Contents

Artificial Intelligence in FinTech: Part 2 1

Analyzing Market Sentiment Using Twitter

Any kind of market, whether it is commodity, stock or cryptocurrency, is driven by the sentiment of the
investors. If the majority investor sentiment about a particular cryptocurrency is positive, there is a good
possibility that cryptocurrency will grow. With millions of people expressing their views about different
topics every minute of the day, Twitter is a goldmine of sentiment data. As a part of our portfolio-building
process, we will be doing sentiment analysis on Twitter data related to Bitcoin to judge the overall
sentiment of investors.

Procuring the Twitter Data

Twitter exposes a public REST API for its users to get a Twitter feed about a particular topic. To use this
method, an app registration is required at Twitter. After the app registration, Twitter provides us with four
tokens: consumer key, consumer secret, access token, and access token secret.

We make use of all four keys for authorization at Twitter. We use the Python library Tweepy to get the
Twitter feed for our sentiment analysis. First, an auth object needs to be generated and passed to the
Tweepy API method to procure the API object. Then we can use the search method of the API to get the
tweets for analysis. The code snippet for the same is as follows:

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

public_tweets = api.search(‘bitcoin’)

Once the data is procured, the next step is to determine the sentiment score of each tweet. The
sentiment score lies between -1 and +1. -1 signifies the overall sentiment of the tweet is highly negative,
and +1 signifies that the tweet is predominantly positive.

We use the TextBlob library provided by Python to complete our sentiment analysis. Once we clean the
tweet of any unknown characters, we can perform the sentiment analysis by using the following snippet:

txt = clean_tweet(tweet.text)

analysis = TextBlob(txt)

sentiment = analysis.sentiment[0]

The complete code and notebook can be found here.

https://github.com/aryancodify/ai_in_fintech/blob/master/CryptoSentimentAnalysis.ipynb

Artificial Intelligence in FinTech: Part 2 2

Risk Analytics for Loan Eligibility

Later, we find the percentage of tweets that are positive and set up a cutoff for investment. For example, if 50% of
all tweets have a positive connotation, we consider the market conducive for investment.

Completing the Portfolio

We can combine the tree analysis – namely the correlation, predictive analytics, and sentiment analysis – to form
a perfect portfolio. Once we find the combination of cryptos that provide a hedge against each other, we can
forecast their prices and analyze the market sentiment around them to determine the right time to enter and exit the
cryptocurrency.

Credit and loans have become a big part of our lifestyles. With everything available on loan now and cheap EMIs
available, a myriad of loans are being applied for on a daily basis. Although banks do have risk analysis executives
to scrutinize loan applications, it is possible an officer could miss something in his/her analysis. Also, each officer
can judge a loan application to the best of their ability, but there is still a chance of personal biases impacting the
loan decision.

On top of that, with loans now available for smaller amounts, it is not sustainable for a bank to recruit officers to
analyze all small loans. This is where the machine learning models shine because they can perform the preliminary
filter to accept or reject a loan application.

In this analysis, we make use of a dataset of previous loans given by a company to study the pattern that leads to
a loan default. The dataset has a column called loan_status, which has three values: Fully Paid, Charged Off,
and Current for the ongoing loans.

We will be training a Random Forest Classifier model in order to predict the possibility of any future default when
we get a new loan application.

Artificial Intelligence in FinTech: Part 2 3

About Random Forest Classifier

Random Forest Classifier is an ensemble machine learning algorithm that uses a set of decision trees to
reach an outcome. In order to decide on the final output, it takes into consideration the majority of the
results given by all these decision trees.

Dataset

The dataset consists of around 100 different features, such as the employment length of the applicant,
annual income, installment amount, purpose, etc. We need to determine how much of an impact each
feature has on our loan application determination.

Data Cleaning

The first task while analyzing any dataset is to clean the data. In our analysis, we remove the columns in
which all the rows are empty, NA, or null. In addition to this, we drop the columns that have more than 60-
70% missing data because it is not possible to impute such columns without introducing significant bias.

Imputing Missing Data

We impute the missing data by analyzing the type of column and the percentage of missing values.
We impute the categorical columns using the mode of the data where possible and use the forward fill
mechanism to impute the missing values for the date type columns.

Dimensionality Reduction Using Correlation

If two columns are highly correlated, dropping one of them is a good idea because it does not add any
value to the model. We determine such features and drop those columns from the dataset.

Artificial Intelligence in FinTech: Part 2 4

Convert Categorical Features to Numerical

Since Random Forest Classifier works only on the numerical data, we need to convert the categorical
columns into numerical. In order to preserve the data characteristics, we use One Hot Encoding for this.
Once we have the encoded values, we drop the original column and keep these values. The code for the
snippet is as follows:

 for variable in cat_variables:

 dummies = pd.get_dummies(cdf_final[variable], prefix=variable)

 cdf_final = pd.concat([cdf_final, dummies], axis=1)

 cdf_final.drop([variable], axis=1, inplace=True)

Split Dataset into Training and Test Dataset

Now we proceed with splitting the dataset into training and test datasets. We make use of the train_test_
split method of model_selection in the scikit-learn package to split the dataset, such that the training
dataset contains 70% of the observations and the test dataset contains 30% of the observations.
train_x, test_x, train_y, test_y = train_test_split(cdf_final[ind_headers], cdf_final[‘loan_status’],

 train_size=0.7)

 When we inspect the dimensions of the training and test dataset, we get the following:

 Train_x Shape :: (26920, 48944)

 Train_y Shape :: (26920,)

 Test_x Shape :: (11538, 48944)

 Test_y Shape :: (11538,)

We see that there are about 26,920 records in the training dataset and 11,538 records in the test
dataset.

Artificial Intelligence in FinTech: Part 2 5

Training Random Forest Classifier

Once we have all our features encoded and the training dataset ready, our next step is to train a Random
Forest Classifier model. We use the RandomForestClassifier method of ensemble package in scikit-
learn to train our Random Forest Classifier.

 clf_A = RandomForestClassifier(n_estimators=20, random_state=100, n_jobs=4)

 predictions = train_model(clf_A, train_x,train_y,test_x,test_y)

 measure_accuracy(test_y, predictions)

Here train_model and measure_accuracy are two custom functions that train the model on the training
dataset and determine various accuracy metrics for the model. Our trained model has the following
hyperparameters:

 RandomForestClassifier(bootstrap=True, class_weight=None, criterion=’gini’,

 max_depth=None, max_features=’auto’, max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=4,

 oob_score=False, random_state=100, verbose=0, warm_start=False)

We use the Gini index in each decision tree to decipher the direction at each node. For the minimum
number of samples required to split the node, we use the default value of two. Similarly, for the minimum
number of samples required to distinguish a node as leaf node, we use the default value of 1.

Artificial Intelligence in FinTech: Part 2 6

Checking The Accuracy Of The Model

Checking the accuracy of the model is important because it helps to see if the model is predicting the
true positives and false negatives accurately. We use the accuracy score and confidence matrix provided
by the scikit-learn library to determine the accuracy of our classifier.

In addition to this, we check Sensitivity, Specificity, F1 score, and Precision to verify that our model has
good predictive power. The following are the results of the same for the Random Forest Model:

It is clear from the above table that, although the accuracy is very high, it cannot be considered as
the gospel truth in terms of model performance because sensitivity for the model is low compared to
the specificity. Since specificity is very high and most of the data points are of non-default cases, the
accuracy is biased towards the specificity and thus has a high value.

Low Sensitivity

Low sensitivity is an indicator that the model is not able to predict the positive class well. This means its
tendency to predict true positives is low and false negatives in the model are on the higher side. In our
case, positive classes are the default or charged-off cases, so we cannot afford to have a low sensitivity.
It would result in more than 50% of default cases going undetected. As such, we need to consider other
models for improving our prediction accuracy.

Model Evaluation Metric Metric Value

Accuracy 0.92

Sensitivity 0.49

Specificity 0.99

Precision Score 0.99

Recall Score 0.49

F1 Score 0.66

Artificial Intelligence in FinTech: Part 2 7

Considering Alternative Models for Classification

Since there is a need for high sensitivity in the model, we need to consider alternative classification models
in order to achieve this. The following are models were considered, along with their respective metrics:

Considering the model evaluation metrics, we can clearly see that the XGBoost model outperforms all
the other models in the problem because it predicts both the default and non-default cases with a high
amount of accuracy. We can consider this model for predicting the default cases.

Side Note About XGBoost

XGBoost, like Random Forest, is an ensemble machine learning algorithm based on an ensemble of
decision trees. The acronym expands to Extreme Gradient Boosting. The difference between XGBoost
and Random Forest is that XGBoost uses a technique called gradient boosting in which new models are
created such that they predict the residuals or errors of prior models, and then they are added together
to make the final prediction. It is called gradient boosting because it uses a gradient of the loss function to
minimize the loss when adding new models.

In boosting, there is a stagewise fitting model where at each stage we have a loss function, the response,
and the current model. We are trying to figure out the parameters/weights of a new function of predictors
that, when added to our existing model, would improve its accuracy. In gradient boosting, this new
function is represented by a decision tree.

In a nutshell, XGBoost looks at the loss function at each stage of model building, evaluates the gradient
of the loss function at the observations, and approximates that gradient by a tree. The determined
parameters are used to formulate a function of predictors, which will be added to the existing model in
order to decrease the error rate.

The ensemble is grown in an adaptive fashion, then simply averaged at the end to predict the class. If
there are a lot of small trees, lasso regularization is normally applied during post-processing on these trees
to select a smaller subset before averaging.

Model Accuracy Sensitivity Specificity Precision Recall F1-Score

Logistic
Regression 0.96 0.74 0.99 0.98 0.74 0.85

Linear SVM
Classifier 0.97 0.85 0.99 0.98 0.85 0.91

XGBoost 0.98 0.90 0.99 0.99 0.90 0.95

Naive Bayes 0.30 0.85 0.20 0.15 0.85 0.26

Artificial Intelligence in FinTech: Part 2 8

Feature Selection Using Importances of the Model

We can improve the feature selection of the model by graphing the feature importances for the model. After
plotting the feature importance for our XGB classifier, we get the following graph:

 graph_feature_importances(trained_model, cdf_no_ls.columns, summarized_
 columns=cat_variables)

In the above bar plot, we can clearly see each of the features in the order they impact the loan default
possibility. We can then drop the features that have very low importance value, as this can help train the
model faster without impacting the bias-variance trade-off.

Forecasting Default

Now that we have the trained model, we can use its predict method to predict default, given all the other
features. As a result, we don’t need manual intervention to prevent loan defaulters.

Putting the Model into Production

In order to put the modeI into production, we will need to serialize the model into a pickle file from which
it can be loaded back into the memory and used to predict incoming data points. The full notebook and
codebase for this use case can be found here.

https://github.com/aryancodify/ai_in_fintech/blob/master/LoanDefaulters.ipynb

Artificial Intelligence in FinTech: Part 2 9

Detecting Credit Card Fraud with Unsupervised
Learning

Credit card and debit card fraud swindles banks and customers out of millions of dollars every week. The
transactions occur at such a large scale that it is impossible for a manual authority to check each and
every transaction for its sanctity. In many cases, banks cannot find a labeled dataset with transactions
identified as fraudulent or genuine. In such cases, unsupervised machine learning techniques need to be
used for classification. Here we look at one such technique called K-Means Clustering.

K-Means Clustering

K-Means Clustering is a clustering technique that works by identifying K centroids and assigning each
data vector to one of the centroids, with an aim to minimize the cosine distance between that vector and
the centroid. The procedure is seen in the figures below:

Artificial Intelligence in FinTech: Part 2 10

Fitting the Model

We use the K-Means method provided by the cluster package in scikit-learn. The following snippet
demonstrates the procedure:

 clf = KMeans(n_clusters=2)

 clf.fit(X)

We get the trained model as follows:

 KMeans(algorithm=’auto’, copy_x=True, init=’k-means++’, max_iter=300,

 n_clusters=2, n_init=10, n_jobs=1, precompute_distances=’auto’,

 random_state=None, tol=0.0001, verbose=0)

Predicting Fraud Transactions in the Future

Once the model is trained, we can predict any future transactions, given the feature vector as follows:

 predict_me = np.array(X)

 predict_me = predict_me.reshape(-1, len(predict_me))

 prediction = clf.predict(predict_me)

The output will be 1 or 0 because we have two clusters, with 1 being the fraudulent cluster. The full
notebook can be viewed here.

Artificial Intelligence in FinTech: Part 2 11

Once we have modeled a given problem and have achieved the required confidence to launch it to the
world, the algorithm can be wrapped in the form of a chatbot. Chatbots reduce the workforce needed for a
project and provide a new form of customer engagement.

For instance, in the case of our portfolio management algorithm, once we have concluded that the market
is conducive for investment, our closed domain chatbot can provide insights to customers who hold
cryptocurrency wallets with us.

Similarly, chatbots can be built to help people improve their CIBIL score by identifying the major factors that
are negatively affecting their credit score.

The opportunities in the area of chatbots are tremendous, and the area is still relatively unexplored. With
the advent of API.ai, Rasa, and similar chatbot services, it is very easy to train and set up a closed domain
chatbot that can go a long way to improving customer-centric strategies.

Exposing Fintech AI as Chatbots

Artificial Intelligence in FinTech: Part 2 12

The continuous evolution in the finance industry – with the plethora of digital transactions and new
technologies like Blockchain – has been mind-boggling. Scaling such a huge industry with a rapid
metamorphosis rate is not possible without bringing in machine intelligence. In the above whitepaper,
we saw glimpses of the power of machine learning (ML) in Fintech. With the advances in deep learning
algorithms and ever more powerful GPUs, the future of ML looks bright. As ML models become more
accurate, financial organizations will begin to rely on them more frequently. This, in turn, will inspire ML
engineers and data scientists to come up with new algorithms and optimize the existing ones.

Conclusion

Artificial Intelligence in FinTech: Part 2 13

Source Code and Datasets

Fraud Detection in Credit Card by Clustering Approach - Vaishali

ARIMA for Time Series Forecasting - Jason Brownlee

7 Methods to Perform Time Series Forecasting - Gurchetan Singh

K-Means with Titanic Dataset - Practical Machine Learning Tutorial with Python - Sentdex

Twitter Sentiment Analysis - Siraj Raval

Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random Forest by
Manish Kumar, M. Thenmozhi :: SSRN

scikit-learn: Machine Learning in Python — scikit-learn 0.24.2 documentation
(-forest-classifier-python-scikit-learn/)

Appendix

References

https://pdfs.semanticscholar.org/3e98/a9ac78b5b89944720c2b428ebf3e46d9950f.pdf
https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://www.analyticsvidhya.com/blog/2018/02/time-series-forecasting-methods
https://pythonprogramming.net/
https://www.youtube.com/watch?v=o_OZdbCzHUA
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=876544
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=876544
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=876544

14

How to Troubleshoot if Apple Pay is not working:

GlobalLogic is a leader in digital product engineering. We help our clients design and build
innovative products, platforms, and digital experiences for the modern world. By integrating
strategic design, complex engineering, and vertical industry expertise, we help our clients
imagine what’s possible and accelerate their transition into tomorrow’s digital businesses.
Headquartered in Silicon Valley, GlobalLogic operates design studios and engineering centers
around the world, extending our deep expertise to customers in the communications, automotive,
healthcare, technology, media and entertainment, manufacturing, and semiconductor industries.

www.globallogic.com

https://www.linkedin.com/company/globallogic
https://twitter.com/globallogic
https://www.facebook.com/GlobalLogic/
http://globallogic.com

