
Detecting Architectural Gaps with
Automation

by Dmytro Nikulin, Lead Software Engineer;
reviewed by Orkhan Gasimov, Technology Director

PRACTITIONER
PERSPECTIVES

Today’s rapidly changing environment requires agile, adaptable software
architecture that can evolve and support the success of the business in a
high-tech world.

Software architecture is the technical foundation of product development and as
such, its readiness for change is a key business consideration.
Uncontrolled architecture drift and erosions may lead to product failure, even
when it is already in a production state or has been live and successful for a while.

For example, architecture drift can lead to the loss of initially expected
extensibility and new customers may fail to use a product if the number of
users increases. Such drifts might be identified during an architecture review.

Typically, this review is a complex process. It takes a great deal of time for
experienced architects to assess the software architecture using largely
manual processes. Manual checks may not be as efficient, and many
architectural issues might not be discovered due to the influence of human
factors.

In this paper, we’ll examine methods for detecting architecture drift and
erosion, the business impacts of it, and potential automated solutions with
use case scenarios.

1GlobalLogic Practitioner Perspectives | June 2023

https://www.globallogic.com/
https://www.globallogic.com/insights

PRACTITIONER
PERSPECTIVES

Software architecture reviews
can prevent these issues,
stopping erosion and drift into
areas not suggested by best
practices and architecture
governance.

Here are a few common types
of manual architecture review:

Dependency analysis

Analyzing the dependencies
between software
components can help identify
instances where components
violate the intended
architectural boundaries.
Tools can examine
dependencies at the code
level, module level, or even at
the architectural level.

Metrics analysis
Utilizing software metrics,
such as cyclomatic
complexity, coupling,
cohesion, and code dupli-
cation can provide insights
into the system architecture’s
overall health. Deviations from
acceptable thresholds or
changes in metric values over
time can indicate potential
drift or erosion.

2GlobalLogic Practitioner Perspectives | June 2023

Architecture drift or erosion
can prevent software from
meeting its product and
architectural requirements,
which could negatively affect
the product’s success.

For example, the product may
end up at risk of failure to
operate. Or, regulations may
disallow the sale of the
product altogether.

The product may also have
performance issues that
impact its success in the
marketplace and prevent
adoption.

Architecture Drift and
Erosion Detection

Architectural drift refers to
the phenomenon where a
software system gradually
deviates from its intended
architectural design over time.

This drift can occur due to
various factors such as ad hoc
changes, evolving
requirements, lack of
documentation, development
team turnover, or a lack of

adherence to architectural
guidelines. An example of drift
in architecture may include
microservices with an API that
does not adhere to the initial
software architecture due to
issues with implementation.

Architecture erosion, on the
other hand, is the process by
which the architecture of a
software system degrades or
deteriorates over time.

It typically occurs due to
incremental changes, patches,
bug fixes, and enhancements
made to the system without
considering the long-term
architectural impact.

Architecture drift and erosion
can lead to a number of
problems within a
software system.

These include reduced
maintainability, increased
complexity, decreased
performance, decreased
reliability, and difficulties in
extending or modifying the
system in the future.

Business Impacts of Architecture Drift and Erosion

https://www.globallogic.com/
https://insights.globallogic.com/story/cyclomatic-complexity/?teaser=yes
https://insights.globallogic.com/story/cyclomatic-complexity/?teaser=yes

PRACTITIONER
PERSPECTIVES

Subjectivity

Manual architecture review
heavily relies on the expertise
and judgment of the reviewers.
Different reviewers may have
varying perspectives,
experiences, and
interpretations of
architectural guidelines,
making the assessment
subjective.

This subjectivity can lead to
inconsistencies in identifying
and addressing architecture
drift and erosion.

Time and resource-intensive

Manual architecture review
can be a time-consuming and
resource-intensive process,
especially for large and
complex software systems.

Reviewers must invest
significant effort in
understanding the system’s
architecture, studying relevant
documentation, and
analyzing the codebase. As a
result, the review process may
take a considerable amount of
time and may not be
feasible for frequent or
continuous monitoring.

3GlobalLogic Practitioner Perspectives | June 2023

Change impact analysis

Whenever a change is
introduced to the system,
conducting a change impact
analysis can help understand
its implications on the
architecture. This analysis
assesses how the change
affects different architectural
components and whether it
aligns with the architectural
principles and constraints.

Peer reviews and code
inspections

Regular code reviews and
inspections involving
architects and experienced
developers can help spot
architectural issues, drift, or
erosion. A fresh set of eyes can
identify inconsistencies and
suggest corrective actions.

The Challenges of
Manual Software
Architecture Review

Proactive architecture reviews
help to identify and prevent
architecture drift or erosion.
The main goals of such
reviews are:

• Validating the architec
 ture’s capabilities to
 support current and future
 business goals.
• Checking the architecture’s
 ability to meet non-func-
 tional requirements.
• Detecting design mistakes
 as early as possible.
• Identifying potential
 technical risks to the
 project.

Even if the evolving
architecture is reviewed
periodically, implementation
changes might still go in a
direction not expected by the
initial software architecture.

Manual architecture review,
while beneficial in detecting
software architecture drift
and erosion, can come with
several challenges, including:

Recommended Reading:

PRACTITIONER
PERSPECTIVES

To overcome these challenges,
organizations often combine
manual architecture review
with automated analysis
techniques and tools that
provide objective assessments,
perform code analysis at scale,
and identify potential drift and
erosion patterns.

Automated analysis is used to
analyze source code,
binaries, and runtime behavior,
to identify inconsistencies and
deviations from the intended
architecture. These tools often
compare the current state of
the system against the
architectural models or
specifications.

Continuous integration and
testing incorporates
architectural checks and tests
into the continuous
integration and deployment
pipeline to help identify
violations or deviations early
on. Automated tests can
assess system adherance to
the expected constraints after
each change.

An automated approach helps
mitigate the challenges of
manual review and enhances
architecture drift and erosion
prevention efforts efficacy.

4GlobalLogic Practitioner Perspectives | June 2023

Limited scope

Reviewers typically have
limited visibility into the entire
system’s codebase and
runtime behavior. They may
only be able to review a
subset of the system or focus
on specific components or
modules.

This limited scope can lead to
potential blind spots, where
architecture drift and
erosion may occur in
unreviewed areas.

Lack of complete
documentation

Manual architecture review
heavily relies on accurate and
up-to-date documentation
to understand the intended
architecture.

However, software systems
often lack comprehensive
documentation, especially
when they have evolved over
time or when documentation
maintenance is neglected.

In such cases, reviewers may
face challenges in assessing
deviations from the original
architectural design.

Human error and oversight

Reviewers, like any human, can
make errors or overlook
certain aspects during the
review process.

They may miss subtle signs of
architecture drift or erosion,
fail to consider all relevant
factors, or misinterpret cer-
tain code constructs.

These human errors can result
in false negatives or false
positives in identifying
architectural issues.

Scalability and consistency

Manual architecture review
becomes increasingly
challenging as the size and
complexity of the software
system grow. Reviewers need
to ensure consistency in their
assessments across different
components and versions of
the system.

Maintaining a consistent
review process and applying
architectural guidelines
uniformly can be difficult,
especially in organizations
with multiple development
teams or distributed projects.

https://www.globallogic.com/
https://www.globallogic.com/insights/blogs/continuous-testing-how-to-measure-and-improve-code-quality/
https://www.globallogic.com/insights/blogs/continuous-testing-how-to-measure-and-improve-code-quality/

PRACTITIONER
PERSPECTIVES

• Data access rules
• Traceability compliance
• OLAP/OLTP processing
• Transaction/concurrency
 model rules
• Software configuration
 (secret and non-secret)
• Different user access roles
 checks
• Multi-tenancy structure rules
• Scaling and disaster recovery
 models

Data level

Data-level checks show how
well the architecture manages
the data. If a check fails, issues
such as data inconsistency or
data duplications can affect
the quality of the data or cause
performance issues. These
checks include:

• Governance rules
• Data Loss Prevention checks
• Data use/reuse policy
• Single source of truth policy
• Archive and purge policy
• Extract/Transform/Load rules
• Logging and indexing rules

5GlobalLogic Practitioner Perspectives | June 2023

Architecture is a broad area,
and the proposed solution
might cover various levels and
aspects within those levels
to verify the architecture and
identify possible gaps.

These important consider-
ations may be found in each of
the following levels:

• Compliance
• Architecture
• Data
• Security
• DevOps
• Scalability
• Quality

Let’s take a look at each area
and examine the business
value of potential checks for
architectural aspects of the
general verification process.

This is not limited to the
described scope and might be
significantly expanded based
on real product needs.

Compliance level

Compliance level checks
show how the architecture
meets regulatory
requirements. If regulatory
requirements are not met, it
will not be possible to sell the
product at all. These checks
might include:

• Data privacy standards
 (such as PII, GDPR, etc.)
• Data sovereignty checks

Architecture level

Architecture level checks
show how the architecture
covers architecture
requirements. If not met,
production can go into a risk
state up to failing to operate.
These checks may include:

• Logical and component
 structure
• CDN requirements
• Workflow/integration
 architecture
• Data/BigData architecture
• SOA/Microservices
 architecture
• API structure rules

Important Considerations for Evaluating Automated Architecture
Review Solutions

https://www.globallogic.com/

PRACTITIONER
PERSPECTIVES

6GlobalLogic Practitioner Perspectives | June 2023

Security level

Security-level checks show
how well the architecture is
secured. If a check fails, the
resulting privacy data leak-
ages can cause reputational
risks. These checks include:

• Identity and Access
 management rules
• Key management policy
• API/Endpoints security
 rules
• Encryption/hashing policy
• DB encryption policy

DevOps level

DevOps checks assess the
architecture’s readiness to go
to market. Failure can delay
release or impact product
quality. These checks include:

• Environment topology/rules
• Cluster and Containers
 structure rules
• Services discovering policy
• Scaling code approach to
 verify readiness to scale
• Metrics/Monitoring policy
• Time zone basis and
 updates to verify that
 solution supports work in
 different time zones and
 supports update of
 time zones

Use Case Scenarios

Extract software architecture from code to assess architecture

Architectural assessments are a common part of the
advisory phase. Architecture information is extracted from
documents, code, configuration files, and other sources, then
assessed to identify gaps and improve the existing architecture.
Extraction may occur when the current solution is facing issues,
such as poor performance or inability to scale to handle a growing
number of users. In such cases, the solution is run on demand.

Detect software architecture drift and erosion on regular basis

The chance of uncontrolled drift or erosion is high during
construction and initial implementation, typically due to the speed
and volume of changes being made. Regularly detecting
architecture drift at the initial stage and later is strongly
recommended to prevent deviation from the target architecture.

This can be implemented as one of the steps in the CI/CD (SCA)
process, an essential part of every fast-growing product. CI/CD
processes connect the development and production environments
and help deliver the product with frequent updates in smaller
chunks, thereby improving time-to-market.

Testing new software architecture

It is not uncommon to find demand to update the architecture to
support new requirements. An example of this might be a request
to scale a solution to onboard many more new customers within an
application.

In this case, the architecture is changed by a business request.
Usually, for such cases, architecture changes are developed
separately from the main workstream, and the changes are
verified on a separate stream before being pushed to the main one.

https://www.globallogic.com/

PRACTITIONER
PERSPECTIVES

7GlobalLogic Practitioner Perspectives | June 2023

Architecture management is essential, and it’s important to understand the
challenges associated with manual reviews.

Analyze the use case scenarios herein and assess their relevance to your own
software projects. Explore ways to enhance your own practices to prevent
architecture drift and erosion.

You might consider implementing similar approaches, such as extracting soft-
ware architecture from code, regularly detecting architecture drift, or testing
new software architecture in a separate stream.

Those interested in exploring automated analysis techniques and tools to en-
hance architecture review processes can research and evaluate the solutions
available. Pay special attention to how these tools address the challenges
we’ve explored here.

Still have questions? See how GlobalLogic’s Architecture Practice helps
businesses like yours modernize legacy systems and transform to meet the
demands of a digital future.

Conclusion

https://www.globallogic.com/
https://www.globallogic.com/services/technical-capabilities/architecture/
https://www.globallogic.com/services/technical-capabilities/architecture/

