Future of Applications with 5G and Cloud.

Categories: CloudAI and MLTechnology

Table of Content

Author

Author

Vijai Verma

Senior Solution Architect

View all Articles

Top Insights

Best practices for selecting a software engineering partner

Best practices for selecting a software engineering partner

SecurityDigital TransformationDevOpsCloudMedia
7 RETAIL TRENDS POWERED BY MOBILE

7 RETAIL TRENDS POWERED BY MOBILE

MobilityConsumer and RetailMedia
My Intro to the Amazing Partnership Between the US Paralympics and the Telecom Industry

My Intro to the Amazing Partnership Between the...

Experience DesignPerspectiveCommunicationsMediaTechnology
Adaptive and Intuitive Design: Disrupting Sports Broadcasting

Adaptive and Intuitive Design: Disrupting Sports Broadcasting

Experience DesignSecurityMobilityDigital TransformationCloudBig Data & AnalyticsMedia

Top Authors

Dinki Chitkara

Dinki Chitkara

Test Engineer, Quality Assurance

Ramneek Sahib

Ramneek Sahib

Consultant

Abhishek Gedam

Abhishek Gedam

Principal Architect

Anil Wadhai & Vishal Umredkar

Anil Wadhai & Vishal Umredkar

Senior Solution Architect | Principal Architect, Technology

Ravikrishna Yallapragada

Ravikrishna Yallapragada

AVP, Engineering

Blog Categories

This paper introduces the main relevant mechanisms in Artificial Intelligence (AI) and Machine Learning (ML), currently investigated and exploited for 5G and B5G networks. The study explains about the various applications of AI/ML in the telecom industry. A family of neural networks is presented which are, generally speaking, non-linear statistical data modeling and decision-making tools. They are typically used to model complex relationships between input and output parameters of a system or to find patterns in data. Feed forward neural networks, deep neural networks, recurrent neural networks, and convolutional neural networks belong to this family.

Reinforcement learning is concerned about how intelligent agents must take actions in order to maximize a collective reward, e.g., to improve a property of the system. Deep reinforcement learning combines deep neural networks and has the benefit that it can operate on non-structured data. Hybrid solutions are presented such as combined analytical and machine learning modeling as well as expert knowledge aided machine learning. Finally, other specific methods are presented, such as generative adversarial networks (GANs) and
unsupervised learning and clustering.

  • URL copied!